天宫遥感自然场景智能识别与可解释性分析

Kunnan Liu, J. Li, Guofeng Xu, Peng Wang
{"title":"天宫遥感自然场景智能识别与可解释性分析","authors":"Kunnan Liu, J. Li, Guofeng Xu, Peng Wang","doi":"10.1117/12.2671376","DOIUrl":null,"url":null,"abstract":"This paper focuses on the intelligent recognition of images in the Tiangong remote sensing image dataset and its interpretability analysis. In this paper, we classified the aforementioned dataset, retrained the Resnet-18 model on the training set, and then verified the results on the validation set with an accuracy of 97.9%. Furthermore, this paper presented an interpretability analysis of deep learning for intelligent recognition of the Tiangong remote sensing image dataset.","PeriodicalId":120866,"journal":{"name":"Artificial Intelligence and Big Data Forum","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tiangong remote sensing natural scene intelligent recognition and interpretablity analysis\",\"authors\":\"Kunnan Liu, J. Li, Guofeng Xu, Peng Wang\",\"doi\":\"10.1117/12.2671376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the intelligent recognition of images in the Tiangong remote sensing image dataset and its interpretability analysis. In this paper, we classified the aforementioned dataset, retrained the Resnet-18 model on the training set, and then verified the results on the validation set with an accuracy of 97.9%. Furthermore, this paper presented an interpretability analysis of deep learning for intelligent recognition of the Tiangong remote sensing image dataset.\",\"PeriodicalId\":120866,\"journal\":{\"name\":\"Artificial Intelligence and Big Data Forum\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Big Data Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2671376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Big Data Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究了天宫遥感图像数据集图像的智能识别及其可解释性分析。在本文中,我们对上述数据集进行分类,在训练集上重新训练Resnet-18模型,然后在验证集上对结果进行验证,准确率达到97.9%。在此基础上,提出了一种基于深度学习的天宫遥感图像数据集智能识别可解释性分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tiangong remote sensing natural scene intelligent recognition and interpretablity analysis
This paper focuses on the intelligent recognition of images in the Tiangong remote sensing image dataset and its interpretability analysis. In this paper, we classified the aforementioned dataset, retrained the Resnet-18 model on the training set, and then verified the results on the validation set with an accuracy of 97.9%. Furthermore, this paper presented an interpretability analysis of deep learning for intelligent recognition of the Tiangong remote sensing image dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信