次日野火预测的机器学习方法

Stella Girtsou, Alexis Apostolakis, G. Giannopoulos, C. Kontoes
{"title":"次日野火预测的机器学习方法","authors":"Stella Girtsou, Alexis Apostolakis, G. Giannopoulos, C. Kontoes","doi":"10.1109/IGARSS47720.2021.9554301","DOIUrl":null,"url":null,"abstract":"In this paper, we handle the problem of next day wildfire prediction via the use of machine learning. In contrast to most works in the relevant literature, we set the problem to its realistic basis, with respect to its large scale, the extreme imbalance in the data distribution, the required high spatial granularity of the predictions and the consideration of the strong spatial correlations inherent in the data. We implement a machine learning workflow that exploits Tree Ensemble and Neural Network algorithms, upon which an extensive hyperparameter search procedure is performed, via cross-validation, in order to select a set of effective models that are expected to generalize well on new data. Our experiments on the whole Greek territory demonstrate the effectiveness of the proposed methodology, rendering it directly applicable to real-world scenarios. Finally, several insights towards further improving the effectiveness of current models are discussed.","PeriodicalId":315312,"journal":{"name":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Machine Learning Methodology for Next Day Wildfire Prediction\",\"authors\":\"Stella Girtsou, Alexis Apostolakis, G. Giannopoulos, C. Kontoes\",\"doi\":\"10.1109/IGARSS47720.2021.9554301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we handle the problem of next day wildfire prediction via the use of machine learning. In contrast to most works in the relevant literature, we set the problem to its realistic basis, with respect to its large scale, the extreme imbalance in the data distribution, the required high spatial granularity of the predictions and the consideration of the strong spatial correlations inherent in the data. We implement a machine learning workflow that exploits Tree Ensemble and Neural Network algorithms, upon which an extensive hyperparameter search procedure is performed, via cross-validation, in order to select a set of effective models that are expected to generalize well on new data. Our experiments on the whole Greek territory demonstrate the effectiveness of the proposed methodology, rendering it directly applicable to real-world scenarios. Finally, several insights towards further improving the effectiveness of current models are discussed.\",\"PeriodicalId\":315312,\"journal\":{\"name\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS47720.2021.9554301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS47720.2021.9554301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们通过使用机器学习来处理次日野火预测问题。与相关文献中的大多数作品相比,我们将问题置于其现实基础之上,考虑到其规模大,数据分布的极端不平衡,预测所需的高空间粒度以及考虑数据固有的强空间相关性。我们实现了一个利用树集成和神经网络算法的机器学习工作流,在此基础上,通过交叉验证执行了一个广泛的超参数搜索过程,以选择一组有效的模型,这些模型有望在新数据上得到很好的推广。我们在整个希腊领土上的实验证明了所提出方法的有效性,使其直接适用于现实世界的场景。最后,讨论了进一步提高现有模型有效性的几点见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning Methodology for Next Day Wildfire Prediction
In this paper, we handle the problem of next day wildfire prediction via the use of machine learning. In contrast to most works in the relevant literature, we set the problem to its realistic basis, with respect to its large scale, the extreme imbalance in the data distribution, the required high spatial granularity of the predictions and the consideration of the strong spatial correlations inherent in the data. We implement a machine learning workflow that exploits Tree Ensemble and Neural Network algorithms, upon which an extensive hyperparameter search procedure is performed, via cross-validation, in order to select a set of effective models that are expected to generalize well on new data. Our experiments on the whole Greek territory demonstrate the effectiveness of the proposed methodology, rendering it directly applicable to real-world scenarios. Finally, several insights towards further improving the effectiveness of current models are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信