具有卷积注意的轻量级变压器

Kungan Zeng, Incheon Paik
{"title":"具有卷积注意的轻量级变压器","authors":"Kungan Zeng, Incheon Paik","doi":"10.1109/iCAST51195.2020.9319489","DOIUrl":null,"url":null,"abstract":"Neural machine translation (NMT) goes through rapid development because of the application of various deep learning techs. Especially, how to construct a more effective structure of NMT attracts more and more attention. Transformer is a state-of-the-art architecture in NMT. It replies on the self-attention mechanism exactly instead of recurrent neural networks (RNN). The Multi-head attention is a crucial part that implements the self-attention mechanism, and it also dramatically affects the scale of the model. In this paper, we present a new Multi-head attention by combining convolution operation. In comparison with the base Transformer, our approach can reduce the number of parameters effectively. And we perform a reasoned experiment. The result shows that the performance of the new model is similar to the base model.","PeriodicalId":212570,"journal":{"name":"2020 11th International Conference on Awareness Science and Technology (iCAST)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Lightweight Transformer with Convolutional Attention\",\"authors\":\"Kungan Zeng, Incheon Paik\",\"doi\":\"10.1109/iCAST51195.2020.9319489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural machine translation (NMT) goes through rapid development because of the application of various deep learning techs. Especially, how to construct a more effective structure of NMT attracts more and more attention. Transformer is a state-of-the-art architecture in NMT. It replies on the self-attention mechanism exactly instead of recurrent neural networks (RNN). The Multi-head attention is a crucial part that implements the self-attention mechanism, and it also dramatically affects the scale of the model. In this paper, we present a new Multi-head attention by combining convolution operation. In comparison with the base Transformer, our approach can reduce the number of parameters effectively. And we perform a reasoned experiment. The result shows that the performance of the new model is similar to the base model.\",\"PeriodicalId\":212570,\"journal\":{\"name\":\"2020 11th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iCAST51195.2020.9319489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCAST51195.2020.9319489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于各种深度学习技术的应用,神经机器翻译(NMT)得到了快速发展。特别是如何构建一个更有效的网络翻译结构越来越受到人们的关注。Transformer是NMT中最先进的架构。它完全依赖于自注意机制,而不是循环神经网络(RNN)。多头注意是实现自注意机制的关键部分,它对模型的尺度影响很大。本文结合卷积运算,提出了一种新的多头注意算法。与基本变压器相比,我们的方法可以有效地减少参数的数量。我们做了一个合理的实验。结果表明,新模型的性能与基本模型相近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lightweight Transformer with Convolutional Attention
Neural machine translation (NMT) goes through rapid development because of the application of various deep learning techs. Especially, how to construct a more effective structure of NMT attracts more and more attention. Transformer is a state-of-the-art architecture in NMT. It replies on the self-attention mechanism exactly instead of recurrent neural networks (RNN). The Multi-head attention is a crucial part that implements the self-attention mechanism, and it also dramatically affects the scale of the model. In this paper, we present a new Multi-head attention by combining convolution operation. In comparison with the base Transformer, our approach can reduce the number of parameters effectively. And we perform a reasoned experiment. The result shows that the performance of the new model is similar to the base model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信