{"title":"关于Hochschild上同调和Koszul对偶的评述","authors":"B. Keller","doi":"10.1090/CONM/761/15312","DOIUrl":null,"url":null,"abstract":"Applying recent results by Lowen-Van den Bergh we show that Hochschild cohomology is preserved under Koszul-Moore duality as a Gerstenhaber algebra. More precisely, the corresponding Hochschild complexes are linked by a quasi-isomorphism of B-infinity-algebras.","PeriodicalId":325430,"journal":{"name":"Advances in Representation Theory of\n Algebras","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A remark on Hochschild cohomology and Koszul\\n duality\",\"authors\":\"B. Keller\",\"doi\":\"10.1090/CONM/761/15312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applying recent results by Lowen-Van den Bergh we show that Hochschild cohomology is preserved under Koszul-Moore duality as a Gerstenhaber algebra. More precisely, the corresponding Hochschild complexes are linked by a quasi-isomorphism of B-infinity-algebras.\",\"PeriodicalId\":325430,\"journal\":{\"name\":\"Advances in Representation Theory of\\n Algebras\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Representation Theory of\\n Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/761/15312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Representation Theory of\n Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/761/15312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
应用Lowen-Van den Bergh的最新结果,我们证明了Hochschild上同调作为Gerstenhaber代数在Koszul-Moore对偶下是保持的。更准确地说,对应的Hochschild复合体是由b无穷代数的拟同构连接起来的。
A remark on Hochschild cohomology and Koszul
duality
Applying recent results by Lowen-Van den Bergh we show that Hochschild cohomology is preserved under Koszul-Moore duality as a Gerstenhaber algebra. More precisely, the corresponding Hochschild complexes are linked by a quasi-isomorphism of B-infinity-algebras.