重构猜想中的图和

Bohan Fang, Zhengyu Zong
{"title":"重构猜想中的图和","authors":"Bohan Fang, Zhengyu Zong","doi":"10.1090/pspum/100/01767","DOIUrl":null,"url":null,"abstract":"The BKMP Remodeling Conjecture \\cite{Ma,BKMP09,BKMP10} predicts all genus open-closed Gromov-Witten invariants for a toric Calabi-Yau $3$-orbifold by Eynard-Orantin's topological recursion \\cite{EO07} on its mirror curve. The proof of the Remodeling Conjecture by the authors \\cite{FLZ1,FLZ3} relies on comparing two Feynman-type graph sums in both A and B-models. In this paper, we will survey these graph sum formulae and discuss their roles in the proof of the conjecture.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Graph sums in the remodeling\\n conjecture\",\"authors\":\"Bohan Fang, Zhengyu Zong\",\"doi\":\"10.1090/pspum/100/01767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The BKMP Remodeling Conjecture \\\\cite{Ma,BKMP09,BKMP10} predicts all genus open-closed Gromov-Witten invariants for a toric Calabi-Yau $3$-orbifold by Eynard-Orantin's topological recursion \\\\cite{EO07} on its mirror curve. The proof of the Remodeling Conjecture by the authors \\\\cite{FLZ1,FLZ3} relies on comparing two Feynman-type graph sums in both A and B-models. In this paper, we will survey these graph sum formulae and discuss their roles in the proof of the conjecture.\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/pspum/100/01767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/pspum/100/01767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

BKMP重构猜想\cite{Ma,BKMP09,BKMP10}通过其镜像曲线上的Eynard-Orantin拓扑递归\cite{EO07}预测了一个环形Calabi-Yau $3$ -轨道的所有属开闭Gromov-Witten不变量。作者\cite{FLZ1,FLZ3}对重塑猜想的证明依赖于比较A和b模型中的两个费曼型图和。在本文中,我们将概述这些图和公式,并讨论它们在证明猜想中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph sums in the remodeling conjecture
The BKMP Remodeling Conjecture \cite{Ma,BKMP09,BKMP10} predicts all genus open-closed Gromov-Witten invariants for a toric Calabi-Yau $3$-orbifold by Eynard-Orantin's topological recursion \cite{EO07} on its mirror curve. The proof of the Remodeling Conjecture by the authors \cite{FLZ1,FLZ3} relies on comparing two Feynman-type graph sums in both A and B-models. In this paper, we will survey these graph sum formulae and discuss their roles in the proof of the conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信