交叉累积张量(块)对角化的多数据集联合分析

D. Lahat, C. Jutten
{"title":"交叉累积张量(块)对角化的多数据集联合分析","authors":"D. Lahat, C. Jutten","doi":"10.1109/SAM.2016.7569736","DOIUrl":null,"url":null,"abstract":"In this paper, we propose approximate diagonalization of a cross-cumulant tensor as a means to achieve independent component analysis (ICA) in several linked datasets. This approach generalizes existing cumulant-based independent vector analysis (IVA). It leads to uniqueness, identifiability and resilience to noise that exceed those in the literature, in certain scenarios. The proposed method can achieve blind identification of underdetermined mixtures when single-dataset cumulant-based methods that use the same order of statistics fall short. In addition, it is possible to analyse more than two datasets in a single tensor factorization. The proposed approach readily extends to independent subspace analysis (ISA), by tensor block-diagonalization. The proposed approach can be used as-is or as an ingredient in various data fusion frameworks, using coupled decompositions. The core idea can be used to generalize existing ICA methods from one dataset to an ensemble.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Joint analysis of multiple datasets by cross-cumulant tensor (block) diagonalization\",\"authors\":\"D. Lahat, C. Jutten\",\"doi\":\"10.1109/SAM.2016.7569736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose approximate diagonalization of a cross-cumulant tensor as a means to achieve independent component analysis (ICA) in several linked datasets. This approach generalizes existing cumulant-based independent vector analysis (IVA). It leads to uniqueness, identifiability and resilience to noise that exceed those in the literature, in certain scenarios. The proposed method can achieve blind identification of underdetermined mixtures when single-dataset cumulant-based methods that use the same order of statistics fall short. In addition, it is possible to analyse more than two datasets in a single tensor factorization. The proposed approach readily extends to independent subspace analysis (ISA), by tensor block-diagonalization. The proposed approach can be used as-is or as an ingredient in various data fusion frameworks, using coupled decompositions. The core idea can be used to generalize existing ICA methods from one dataset to an ensemble.\",\"PeriodicalId\":159236,\"journal\":{\"name\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2016.7569736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了交叉累积张量的近似对角化,作为在多个关联数据集中实现独立分量分析(ICA)的一种手段。该方法推广了现有的基于累积量的独立向量分析(IVA)。在某些情况下,它会导致独特性,可识别性和对噪音的适应力超过文献中的那些。当使用相同统计顺序的基于单数据累积量的方法不足时,该方法可以实现对欠确定混合物的盲识别。此外,可以在单个张量分解中分析两个以上的数据集。该方法通过张量块对角化很容易扩展到独立子空间分析(ISA)。通过耦合分解,所提出的方法可以按原样使用,也可以作为各种数据融合框架的组成部分使用。核心思想可以用于将现有的ICA方法从一个数据集推广到一个集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint analysis of multiple datasets by cross-cumulant tensor (block) diagonalization
In this paper, we propose approximate diagonalization of a cross-cumulant tensor as a means to achieve independent component analysis (ICA) in several linked datasets. This approach generalizes existing cumulant-based independent vector analysis (IVA). It leads to uniqueness, identifiability and resilience to noise that exceed those in the literature, in certain scenarios. The proposed method can achieve blind identification of underdetermined mixtures when single-dataset cumulant-based methods that use the same order of statistics fall short. In addition, it is possible to analyse more than two datasets in a single tensor factorization. The proposed approach readily extends to independent subspace analysis (ISA), by tensor block-diagonalization. The proposed approach can be used as-is or as an ingredient in various data fusion frameworks, using coupled decompositions. The core idea can be used to generalize existing ICA methods from one dataset to an ensemble.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信