{"title":"深度学习SOTA-Ensemble学习方法的基本概述:系统的文献综述","authors":"Marco Klaiber","doi":"10.31763/sitech.v2i2.549","DOIUrl":null,"url":null,"abstract":"The rapid growth in popularity of Deep Learning (DL) continues to bring more use cases and opportunities, with methods rapidly evolving and new fields developing from the convergence of different algorithms. For this systematic literature review, we considered the most relevant peer-reviewed journals and conference papers on the state of the art of various Ensemble Learning (EL) methods for application in DL, which are also expected to give rise to new ones in combination. The EL methods relevant to this work are described in detail and the respective popular combination strategies as well as the individual tuning and averaging procedures are presented. A comprehensive overview of the various limitations of EL is then provided, culminating in the final formulation of research gaps for future scholarly work on the results, which is the goal of this thesis. This work fills the research gap for upcoming work in EL for by proving in detail and making accessible the fundamental properties of the chosen methods, which will further deepen the understanding of the complex topic in the future and, following the maxim of ensemble learning, should enable better results through an ensemble of knowledge in the future.","PeriodicalId":123344,"journal":{"name":"Science in Information Technology Letters","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Fundamental Overview of SOTA-Ensemble Learning Methods for Deep Learning: A Systematic Literature Review\",\"authors\":\"Marco Klaiber\",\"doi\":\"10.31763/sitech.v2i2.549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth in popularity of Deep Learning (DL) continues to bring more use cases and opportunities, with methods rapidly evolving and new fields developing from the convergence of different algorithms. For this systematic literature review, we considered the most relevant peer-reviewed journals and conference papers on the state of the art of various Ensemble Learning (EL) methods for application in DL, which are also expected to give rise to new ones in combination. The EL methods relevant to this work are described in detail and the respective popular combination strategies as well as the individual tuning and averaging procedures are presented. A comprehensive overview of the various limitations of EL is then provided, culminating in the final formulation of research gaps for future scholarly work on the results, which is the goal of this thesis. This work fills the research gap for upcoming work in EL for by proving in detail and making accessible the fundamental properties of the chosen methods, which will further deepen the understanding of the complex topic in the future and, following the maxim of ensemble learning, should enable better results through an ensemble of knowledge in the future.\",\"PeriodicalId\":123344,\"journal\":{\"name\":\"Science in Information Technology Letters\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science in Information Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31763/sitech.v2i2.549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in Information Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31763/sitech.v2i2.549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Fundamental Overview of SOTA-Ensemble Learning Methods for Deep Learning: A Systematic Literature Review
The rapid growth in popularity of Deep Learning (DL) continues to bring more use cases and opportunities, with methods rapidly evolving and new fields developing from the convergence of different algorithms. For this systematic literature review, we considered the most relevant peer-reviewed journals and conference papers on the state of the art of various Ensemble Learning (EL) methods for application in DL, which are also expected to give rise to new ones in combination. The EL methods relevant to this work are described in detail and the respective popular combination strategies as well as the individual tuning and averaging procedures are presented. A comprehensive overview of the various limitations of EL is then provided, culminating in the final formulation of research gaps for future scholarly work on the results, which is the goal of this thesis. This work fills the research gap for upcoming work in EL for by proving in detail and making accessible the fundamental properties of the chosen methods, which will further deepen the understanding of the complex topic in the future and, following the maxim of ensemble learning, should enable better results through an ensemble of knowledge in the future.