有限生成无扭转幂零群的矩阵表示的维数

Maggie E. Habeeb, Delaram Kahrobaei
{"title":"有限生成无扭转幂零群的矩阵表示的维数","authors":"Maggie E. Habeeb, Delaram Kahrobaei","doi":"10.1515/gcc-2013-0011","DOIUrl":null,"url":null,"abstract":"Abstract. It is well known that any polycyclic group, and hence any finitely generated nilpotent group, can be embedded into for an appropriate ; that is, each element in the group has a unique matrix representation. An algorithm to determine this embedding was presented in [J. Algebra 300 (2006), 376–383]. In this paper, we determine the complexity of the crux of the algorithm and the dimension of the matrices produced as well as provide a modification of the algorithm presented in [J. Algebra 300 (2006), 376–383].","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the dimension of matrix representations of finitely generated torsion free nilpotent groups\",\"authors\":\"Maggie E. Habeeb, Delaram Kahrobaei\",\"doi\":\"10.1515/gcc-2013-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. It is well known that any polycyclic group, and hence any finitely generated nilpotent group, can be embedded into for an appropriate ; that is, each element in the group has a unique matrix representation. An algorithm to determine this embedding was presented in [J. Algebra 300 (2006), 376–383]. In this paper, we determine the complexity of the crux of the algorithm and the dimension of the matrices produced as well as provide a modification of the algorithm presented in [J. Algebra 300 (2006), 376–383].\",\"PeriodicalId\":119576,\"journal\":{\"name\":\"Groups Complex. Cryptol.\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complex. Cryptol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2013-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2013-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要众所周知,任何多环群,也就是任何有限生成的幂零群,都可以嵌入到一个合适的;也就是说,组中的每个元素都有一个唯一的矩阵表示。一种确定这种嵌入的算法在[J]。代数300(2006),376-383。在本文中,我们确定了算法关键部分的复杂度和生成矩阵的维数,并对[J]中提出的算法进行了修改。代数300(2006),376-383。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the dimension of matrix representations of finitely generated torsion free nilpotent groups
Abstract. It is well known that any polycyclic group, and hence any finitely generated nilpotent group, can be embedded into for an appropriate ; that is, each element in the group has a unique matrix representation. An algorithm to determine this embedding was presented in [J. Algebra 300 (2006), 376–383]. In this paper, we determine the complexity of the crux of the algorithm and the dimension of the matrices produced as well as provide a modification of the algorithm presented in [J. Algebra 300 (2006), 376–383].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信