基于模糊模型库的诊断系统

Yurii A. Korablev
{"title":"基于模糊模型库的诊断系统","authors":"Yurii A. Korablev","doi":"10.1109/SCM.2017.7970585","DOIUrl":null,"url":null,"abstract":"In this paper the approach on the base bank of fuzzy diagnostic models for fault detections is proposed on example with coal mill used at a power plant. A model bank is constructed to reproduce behaviour of the normal and fault states. Fuzzy reasoning and basic statistical methods are combined to identify changes in normal model residuals. Fault models are fuzzy rules for describing abnormalities in selected time series.","PeriodicalId":315574,"journal":{"name":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic system based on bank of fuzzy models\",\"authors\":\"Yurii A. Korablev\",\"doi\":\"10.1109/SCM.2017.7970585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the approach on the base bank of fuzzy diagnostic models for fault detections is proposed on example with coal mill used at a power plant. A model bank is constructed to reproduce behaviour of the normal and fault states. Fuzzy reasoning and basic statistical methods are combined to identify changes in normal model residuals. Fault models are fuzzy rules for describing abnormalities in selected time series.\",\"PeriodicalId\":315574,\"journal\":{\"name\":\"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCM.2017.7970585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCM.2017.7970585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文以某电厂磨煤机为例,提出了基于模糊诊断模型库的故障检测方法。构建模型库来再现正常和故障状态的行为。将模糊推理和基本统计方法相结合,识别正态模型残差的变化。故障模型是在选定的时间序列中描述异常的模糊规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnostic system based on bank of fuzzy models
In this paper the approach on the base bank of fuzzy diagnostic models for fault detections is proposed on example with coal mill used at a power plant. A model bank is constructed to reproduce behaviour of the normal and fault states. Fuzzy reasoning and basic statistical methods are combined to identify changes in normal model residuals. Fault models are fuzzy rules for describing abnormalities in selected time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信