Štěpán Jedlan, M. Ševeček, A. Prantl, M. Brázda, J. Hodek, P. Podaný
{"title":"增材制造在核电工业中的应用","authors":"Štěpán Jedlan, M. Ševeček, A. Prantl, M. Brázda, J. Hodek, P. Podaný","doi":"10.1109/IYCE54153.2022.9857541","DOIUrl":null,"url":null,"abstract":"The technology of additive manufacturing (AM) offers great opportunities, such as complex geometries and shapes of desired products. In contrast to other conventional methods, specifically subtractive and formative, where the material is subtracted or filled into a form, the principle of AM is material addition. The material is added in thin layers, one on top of the other, and then sintered, usually using a laser or an electron beam. The process is then continuously repeated until the product is finished. The presented paper discusses AM methods that use metal materials and it describes the application of these methods in the nuclear power industry. The most common technologies are powder bed fusion (PBF) and direct energy deposition (DED). This contribution also discusses the materials AISI 316L and 08CH18N10T, as they are widely used in the nuclear industry and are part of future experiments.","PeriodicalId":248738,"journal":{"name":"2022 8th International Youth Conference on Energy (IYCE)","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of Additive Manufacturing in Nuclear Power Industry\",\"authors\":\"Štěpán Jedlan, M. Ševeček, A. Prantl, M. Brázda, J. Hodek, P. Podaný\",\"doi\":\"10.1109/IYCE54153.2022.9857541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The technology of additive manufacturing (AM) offers great opportunities, such as complex geometries and shapes of desired products. In contrast to other conventional methods, specifically subtractive and formative, where the material is subtracted or filled into a form, the principle of AM is material addition. The material is added in thin layers, one on top of the other, and then sintered, usually using a laser or an electron beam. The process is then continuously repeated until the product is finished. The presented paper discusses AM methods that use metal materials and it describes the application of these methods in the nuclear power industry. The most common technologies are powder bed fusion (PBF) and direct energy deposition (DED). This contribution also discusses the materials AISI 316L and 08CH18N10T, as they are widely used in the nuclear industry and are part of future experiments.\",\"PeriodicalId\":248738,\"journal\":{\"name\":\"2022 8th International Youth Conference on Energy (IYCE)\",\"volume\":\"252 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Youth Conference on Energy (IYCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IYCE54153.2022.9857541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Youth Conference on Energy (IYCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IYCE54153.2022.9857541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Utilization of Additive Manufacturing in Nuclear Power Industry
The technology of additive manufacturing (AM) offers great opportunities, such as complex geometries and shapes of desired products. In contrast to other conventional methods, specifically subtractive and formative, where the material is subtracted or filled into a form, the principle of AM is material addition. The material is added in thin layers, one on top of the other, and then sintered, usually using a laser or an electron beam. The process is then continuously repeated until the product is finished. The presented paper discusses AM methods that use metal materials and it describes the application of these methods in the nuclear power industry. The most common technologies are powder bed fusion (PBF) and direct energy deposition (DED). This contribution also discusses the materials AISI 316L and 08CH18N10T, as they are widely used in the nuclear industry and are part of future experiments.