随机利率下的期权定价

Xiuni Yang, Yunfeng Yang
{"title":"随机利率下的期权定价","authors":"Xiuni Yang, Yunfeng Yang","doi":"10.1109/CIS2018.2018.00109","DOIUrl":null,"url":null,"abstract":"This paper considers the pricing problem of European options. We will generalize the jump-diffusion option pricing formula by incorporating stochastic interest rates. Under the hypothesis of underlying asset price being driven by a jump-diffusion process that is a kind of special renewal process discussed the option pricing when interest rate is random variable, the formula of European options for dividend paying securities is deduced. Hence the results in R.C.Merton are generalized.","PeriodicalId":185099,"journal":{"name":"2018 14th International Conference on Computational Intelligence and Security (CIS)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Option Pricing under Stochastic Interest Rates\",\"authors\":\"Xiuni Yang, Yunfeng Yang\",\"doi\":\"10.1109/CIS2018.2018.00109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the pricing problem of European options. We will generalize the jump-diffusion option pricing formula by incorporating stochastic interest rates. Under the hypothesis of underlying asset price being driven by a jump-diffusion process that is a kind of special renewal process discussed the option pricing when interest rate is random variable, the formula of European options for dividend paying securities is deduced. Hence the results in R.C.Merton are generalized.\",\"PeriodicalId\":185099,\"journal\":{\"name\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS2018.2018.00109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS2018.2018.00109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究欧式期权的定价问题。我们将引入随机利率来推广跳跃扩散期权定价公式。在标的资产价格受跳跃-扩散过程(一种特殊的续期过程)驱动的假设下,讨论了利率为随机变量时的期权定价问题,推导了股利支付证券欧式期权的定价公式。因此,默顿的结果得到推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Option Pricing under Stochastic Interest Rates
This paper considers the pricing problem of European options. We will generalize the jump-diffusion option pricing formula by incorporating stochastic interest rates. Under the hypothesis of underlying asset price being driven by a jump-diffusion process that is a kind of special renewal process discussed the option pricing when interest rate is random variable, the formula of European options for dividend paying securities is deduced. Hence the results in R.C.Merton are generalized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信