基于鸡群优化算法的正交小波变换盲均衡算法

Jing Sun
{"title":"基于鸡群优化算法的正交小波变换盲均衡算法","authors":"Jing Sun","doi":"10.1109/ICEDME50972.2020.00152","DOIUrl":null,"url":null,"abstract":"According to disadvantages of low convergence rate, big steady-state and local convergence error of traditional equalization constant modulus algorithm(CMA), combined with the orthogonal wavelet transform and the chicken swarm optimization algorithm(CSO), an orthogonal wavelet transform blind equalization algorithm based on chicken swarm optimization algorithm (CSO-WT-CMA) is proposed. Based on the CMA, the proposed algorithm improved the convergence rate by using the orthogonal wavelet transform to normalize the transmission signal (WT-CMA). Meanwhile, in order to avoid premature convergence, local optimization and can’t achieve global optimization, inertia weight factor is introduced into the location update formula of hens and chicks, improving the global search and local search ability. Computer simulations in underwater acoustic channels indicate that the proposed algorithm outperforms the WT-CMA in mean square error and convergence rate.","PeriodicalId":155375,"journal":{"name":"2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal Wavelet Transform Blind Equalization Algorithm based on Chicken Swarm Optimization Algorithm\",\"authors\":\"Jing Sun\",\"doi\":\"10.1109/ICEDME50972.2020.00152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to disadvantages of low convergence rate, big steady-state and local convergence error of traditional equalization constant modulus algorithm(CMA), combined with the orthogonal wavelet transform and the chicken swarm optimization algorithm(CSO), an orthogonal wavelet transform blind equalization algorithm based on chicken swarm optimization algorithm (CSO-WT-CMA) is proposed. Based on the CMA, the proposed algorithm improved the convergence rate by using the orthogonal wavelet transform to normalize the transmission signal (WT-CMA). Meanwhile, in order to avoid premature convergence, local optimization and can’t achieve global optimization, inertia weight factor is introduced into the location update formula of hens and chicks, improving the global search and local search ability. Computer simulations in underwater acoustic channels indicate that the proposed algorithm outperforms the WT-CMA in mean square error and convergence rate.\",\"PeriodicalId\":155375,\"journal\":{\"name\":\"2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEDME50972.2020.00152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEDME50972.2020.00152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对传统均衡恒模算法(CMA)收敛速度慢、稳态和局部收敛误差大的缺点,将正交小波变换与鸡群优化算法(CSO)相结合,提出了一种基于鸡群优化算法的正交小波变换盲均衡算法(CSO- wt -CMA)。在CMA的基础上,采用正交小波变换对传输信号进行归一化,提高了收敛速度。同时,为了避免过早收敛、局部优化和无法实现全局优化,在母鸡和雏鸡位置更新公式中引入惯性权重因子,提高了全局搜索和局部搜索能力。在水声信道中的计算机仿真表明,该算法在均方误差和收敛速度上都优于WT-CMA算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal Wavelet Transform Blind Equalization Algorithm based on Chicken Swarm Optimization Algorithm
According to disadvantages of low convergence rate, big steady-state and local convergence error of traditional equalization constant modulus algorithm(CMA), combined with the orthogonal wavelet transform and the chicken swarm optimization algorithm(CSO), an orthogonal wavelet transform blind equalization algorithm based on chicken swarm optimization algorithm (CSO-WT-CMA) is proposed. Based on the CMA, the proposed algorithm improved the convergence rate by using the orthogonal wavelet transform to normalize the transmission signal (WT-CMA). Meanwhile, in order to avoid premature convergence, local optimization and can’t achieve global optimization, inertia weight factor is introduced into the location update formula of hens and chicks, improving the global search and local search ability. Computer simulations in underwater acoustic channels indicate that the proposed algorithm outperforms the WT-CMA in mean square error and convergence rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信