基于改进更快RCNN的铝表面缺陷检测算法

Lu Li, Zhanjun Jiang, Yanneng Li
{"title":"基于改进更快RCNN的铝表面缺陷检测算法","authors":"Lu Li, Zhanjun Jiang, Yanneng Li","doi":"10.1109/icicn52636.2021.9673969","DOIUrl":null,"url":null,"abstract":"There are some problems in the surface defect detection of industrial aluminum products, such as small defect samples, extreme length-to-width ratio of defect, low precision of small defect detection, etc. To solve these problems, an aluminum surface defect detection algorithm is proposed based on improved Faster RCNN. The number of defect samples is increased by data augmentation, and the residual network ResNet50 is employed as the backbone feature extraction network to extract aluminum defect features. Then the path enhancement feature pyramid network (PAFPN) is added to the backbone feature extraction network to form a multi-scale feature map which strengthens the utilization of feature information from the lower layers. Soft non-maximum suppression (Soft-NMS) is used to further improve the detection performance of the algorithm. Results show that the mean average accuracy (mAP) of the proposed algorithm is 78.8%, which is 2.2% higher than the original algorithm.","PeriodicalId":231379,"journal":{"name":"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Surface Defect Detection Algorithm of Aluminum Based on Improved Faster RCNN\",\"authors\":\"Lu Li, Zhanjun Jiang, Yanneng Li\",\"doi\":\"10.1109/icicn52636.2021.9673969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are some problems in the surface defect detection of industrial aluminum products, such as small defect samples, extreme length-to-width ratio of defect, low precision of small defect detection, etc. To solve these problems, an aluminum surface defect detection algorithm is proposed based on improved Faster RCNN. The number of defect samples is increased by data augmentation, and the residual network ResNet50 is employed as the backbone feature extraction network to extract aluminum defect features. Then the path enhancement feature pyramid network (PAFPN) is added to the backbone feature extraction network to form a multi-scale feature map which strengthens the utilization of feature information from the lower layers. Soft non-maximum suppression (Soft-NMS) is used to further improve the detection performance of the algorithm. Results show that the mean average accuracy (mAP) of the proposed algorithm is 78.8%, which is 2.2% higher than the original algorithm.\",\"PeriodicalId\":231379,\"journal\":{\"name\":\"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icicn52636.2021.9673969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icicn52636.2021.9673969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

工业铝制品表面缺陷检测存在缺陷样品偏小、缺陷长宽比偏大、小缺陷检测精度低等问题。为了解决这些问题,提出了一种基于改进的Faster RCNN的铝表面缺陷检测算法。通过数据增强增加缺陷样本的数量,采用残差网络ResNet50作为骨干特征提取网络提取铝缺陷特征。然后在主干特征提取网络中加入路径增强特征金字塔网络(PAFPN),形成多尺度特征图,增强了对底层特征信息的利用。采用软非最大抑制(Soft- nms)进一步提高算法的检测性能。结果表明,该算法的平均准确率(mAP)为78.8%,比原算法提高了2.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface Defect Detection Algorithm of Aluminum Based on Improved Faster RCNN
There are some problems in the surface defect detection of industrial aluminum products, such as small defect samples, extreme length-to-width ratio of defect, low precision of small defect detection, etc. To solve these problems, an aluminum surface defect detection algorithm is proposed based on improved Faster RCNN. The number of defect samples is increased by data augmentation, and the residual network ResNet50 is employed as the backbone feature extraction network to extract aluminum defect features. Then the path enhancement feature pyramid network (PAFPN) is added to the backbone feature extraction network to form a multi-scale feature map which strengthens the utilization of feature information from the lower layers. Soft non-maximum suppression (Soft-NMS) is used to further improve the detection performance of the algorithm. Results show that the mean average accuracy (mAP) of the proposed algorithm is 78.8%, which is 2.2% higher than the original algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信