基于语义SLAM的室内地图实时定位研究

Raktim Gautam Goswami, P. V. Amith, J. Hari, A. Dhaygude, P. Krishnamurthy, J. Rizzo, A. Tzes, F. Khorrami
{"title":"基于语义SLAM的室内地图实时定位研究","authors":"Raktim Gautam Goswami, P. V. Amith, J. Hari, A. Dhaygude, P. Krishnamurthy, J. Rizzo, A. Tzes, F. Khorrami","doi":"10.1109/ICARA56516.2023.10125919","DOIUrl":null,"url":null,"abstract":"In this paper, a method for real-time global localization (registration) of an agent (robot or visually impaired person) in the presence of an a priori indoor map (e.g., an image of a floor plan) is presented. In the proposed algorithm, the SLAM map created by the agent equipped with RGB-D and IMU sensors is used in conjunction with an a priori architectural floor plan to find the global location of the agent. This involves extraction and vectorization of the semantic object locations from the a priori map image, implementation of real-time semantic SLAM using onboard sensors on the agent, and the use of a particle filter based optimization method for global localization. The proposed algorithm is applied in an indoor environment and localization results are presented showing the effectiveness of the approach.","PeriodicalId":443572,"journal":{"name":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient Real-Time Localization in Prior Indoor Maps Using Semantic SLAM\",\"authors\":\"Raktim Gautam Goswami, P. V. Amith, J. Hari, A. Dhaygude, P. Krishnamurthy, J. Rizzo, A. Tzes, F. Khorrami\",\"doi\":\"10.1109/ICARA56516.2023.10125919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a method for real-time global localization (registration) of an agent (robot or visually impaired person) in the presence of an a priori indoor map (e.g., an image of a floor plan) is presented. In the proposed algorithm, the SLAM map created by the agent equipped with RGB-D and IMU sensors is used in conjunction with an a priori architectural floor plan to find the global location of the agent. This involves extraction and vectorization of the semantic object locations from the a priori map image, implementation of real-time semantic SLAM using onboard sensors on the agent, and the use of a particle filter based optimization method for global localization. The proposed algorithm is applied in an indoor environment and localization results are presented showing the effectiveness of the approach.\",\"PeriodicalId\":443572,\"journal\":{\"name\":\"2023 9th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA56516.2023.10125919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA56516.2023.10125919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种在先验室内地图(例如平面图图像)存在的情况下,对智能体(机器人或视障人士)进行实时全局定位(注册)的方法。在该算法中,使用由配备RGB-D和IMU传感器的智能体创建的SLAM地图,结合先验的建筑平面图来查找智能体的全局位置。这包括从先验地图图像中提取和矢量化语义对象位置,使用代理上的机载传感器实现实时语义SLAM,以及使用基于粒子滤波的全局定位优化方法。将该算法应用于室内环境,并给出了定位结果,结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Real-Time Localization in Prior Indoor Maps Using Semantic SLAM
In this paper, a method for real-time global localization (registration) of an agent (robot or visually impaired person) in the presence of an a priori indoor map (e.g., an image of a floor plan) is presented. In the proposed algorithm, the SLAM map created by the agent equipped with RGB-D and IMU sensors is used in conjunction with an a priori architectural floor plan to find the global location of the agent. This involves extraction and vectorization of the semantic object locations from the a priori map image, implementation of real-time semantic SLAM using onboard sensors on the agent, and the use of a particle filter based optimization method for global localization. The proposed algorithm is applied in an indoor environment and localization results are presented showing the effectiveness of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信