{"title":"随机可测试顺序电路的设计","authors":"H. Wunderlich","doi":"10.1109/FTCS.1989.105552","DOIUrl":null,"url":null,"abstract":"A method is described for selecting a minimal set of directly accessible flip-flops. Since this problem turns out to be NP-complete, suboptimal solutions can be derived using some heuristics. An algorithm is presented to compute the corresponding weights of the patterns, which are time-dependent in some cases. The entire approach is validated with the help of examples. Only 10-40% of the flip-flops have to be integrated into a partial scan path or into a built-in self-test register to obtain nearly complete fault coverage by weighted random patterns.<<ETX>>","PeriodicalId":230363,"journal":{"name":"[1989] The Nineteenth International Symposium on Fault-Tolerant Computing. Digest of Papers","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"The design of random-testable sequential circuits\",\"authors\":\"H. Wunderlich\",\"doi\":\"10.1109/FTCS.1989.105552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method is described for selecting a minimal set of directly accessible flip-flops. Since this problem turns out to be NP-complete, suboptimal solutions can be derived using some heuristics. An algorithm is presented to compute the corresponding weights of the patterns, which are time-dependent in some cases. The entire approach is validated with the help of examples. Only 10-40% of the flip-flops have to be integrated into a partial scan path or into a built-in self-test register to obtain nearly complete fault coverage by weighted random patterns.<<ETX>>\",\"PeriodicalId\":230363,\"journal\":{\"name\":\"[1989] The Nineteenth International Symposium on Fault-Tolerant Computing. Digest of Papers\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1989] The Nineteenth International Symposium on Fault-Tolerant Computing. Digest of Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FTCS.1989.105552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1989] The Nineteenth International Symposium on Fault-Tolerant Computing. Digest of Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTCS.1989.105552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A method is described for selecting a minimal set of directly accessible flip-flops. Since this problem turns out to be NP-complete, suboptimal solutions can be derived using some heuristics. An algorithm is presented to compute the corresponding weights of the patterns, which are time-dependent in some cases. The entire approach is validated with the help of examples. Only 10-40% of the flip-flops have to be integrated into a partial scan path or into a built-in self-test register to obtain nearly complete fault coverage by weighted random patterns.<>