基于互信息的典型分析

A. Nielsen, Jacob S. Vestergaard
{"title":"基于互信息的典型分析","authors":"A. Nielsen, Jacob S. Vestergaard","doi":"10.1109/IGARSS.2015.7325954","DOIUrl":null,"url":null,"abstract":"Canonical correlation analysis (CCA) is an established multi-variate statistical method for finding similarities between linear combinations of (normally two) sets of multivariate observations. In this contribution we replace (linear) correlation as the measure of association between the linear combinations with the information theoretical measure mutual information (MI). We term this type of analysis canonical information analysis (CIA). MI allows for the actual joint distribution of the variables involved and not just second order statistics. While CCA is ideal for Gaussian data, CIA facilitates analysis of variables with different genesis and therefore different statistical distributions and different modalities. As a proof of concept we give a toy example. We also give an example with one (weather radar based) variable in the one set and eight spectral bands of optical satellite data in the other set.","PeriodicalId":125717,"journal":{"name":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Canonical analysis basedonmutual information\",\"authors\":\"A. Nielsen, Jacob S. Vestergaard\",\"doi\":\"10.1109/IGARSS.2015.7325954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Canonical correlation analysis (CCA) is an established multi-variate statistical method for finding similarities between linear combinations of (normally two) sets of multivariate observations. In this contribution we replace (linear) correlation as the measure of association between the linear combinations with the information theoretical measure mutual information (MI). We term this type of analysis canonical information analysis (CIA). MI allows for the actual joint distribution of the variables involved and not just second order statistics. While CCA is ideal for Gaussian data, CIA facilitates analysis of variables with different genesis and therefore different statistical distributions and different modalities. As a proof of concept we give a toy example. We also give an example with one (weather radar based) variable in the one set and eight spectral bands of optical satellite data in the other set.\",\"PeriodicalId\":125717,\"journal\":{\"name\":\"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2015.7325954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2015.7325954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

典型相关分析(CCA)是一种建立的多变量统计方法,用于寻找(通常是两组)多变量观测值的线性组合之间的相似性。在这个贡献中,我们用信息理论度量互信息(MI)代替(线性)相关性作为线性组合之间关联的度量。我们将这种类型的分析称为规范信息分析(CIA)。MI允许所涉及变量的实际联合分布,而不仅仅是二阶统计量。虽然CCA是高斯数据的理想选择,但CIA有助于分析具有不同起源的变量,因此可以分析不同的统计分布和不同的模态。作为概念的证明,我们给出一个玩具的例子。我们还给出了一个例子,其中一组中有一个(基于气象雷达的)变量,另一组中有光学卫星数据的八个光谱波段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical analysis basedonmutual information
Canonical correlation analysis (CCA) is an established multi-variate statistical method for finding similarities between linear combinations of (normally two) sets of multivariate observations. In this contribution we replace (linear) correlation as the measure of association between the linear combinations with the information theoretical measure mutual information (MI). We term this type of analysis canonical information analysis (CIA). MI allows for the actual joint distribution of the variables involved and not just second order statistics. While CCA is ideal for Gaussian data, CIA facilitates analysis of variables with different genesis and therefore different statistical distributions and different modalities. As a proof of concept we give a toy example. We also give an example with one (weather radar based) variable in the one set and eight spectral bands of optical satellite data in the other set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信