{"title":"纵向人类衰老数据分类的特征选择","authors":"Tossapol Pomsuwan, A. Freitas","doi":"10.1109/ICDMW.2017.102","DOIUrl":null,"url":null,"abstract":"We propose a new variant of the Correlation-based Feature Selection (CFS) method for coping with longitudinal data – where variables are repeatedly measured across different time points. The proposed CFS variant is evaluated on ten datasets created using data from the English Longitudinal Study of Ageing (ELSA), with different age-related diseases used as the class variables to be predicted. The results show that, overall, the proposed CFS variant leads to better predictive performance than the standard CFS and the baseline approach of no feature selection, when using Naïve Bayes and J48 decision tree induction as classification algorithms (although the difference in performance is very small in the results for J4.8). We also report the most relevant features selected by J48 across the datasets.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Feature Selection for the Classification of Longitudinal Human Ageing Data\",\"authors\":\"Tossapol Pomsuwan, A. Freitas\",\"doi\":\"10.1109/ICDMW.2017.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new variant of the Correlation-based Feature Selection (CFS) method for coping with longitudinal data – where variables are repeatedly measured across different time points. The proposed CFS variant is evaluated on ten datasets created using data from the English Longitudinal Study of Ageing (ELSA), with different age-related diseases used as the class variables to be predicted. The results show that, overall, the proposed CFS variant leads to better predictive performance than the standard CFS and the baseline approach of no feature selection, when using Naïve Bayes and J48 decision tree induction as classification algorithms (although the difference in performance is very small in the results for J4.8). We also report the most relevant features selected by J48 across the datasets.\",\"PeriodicalId\":389183,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2017.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature Selection for the Classification of Longitudinal Human Ageing Data
We propose a new variant of the Correlation-based Feature Selection (CFS) method for coping with longitudinal data – where variables are repeatedly measured across different time points. The proposed CFS variant is evaluated on ten datasets created using data from the English Longitudinal Study of Ageing (ELSA), with different age-related diseases used as the class variables to be predicted. The results show that, overall, the proposed CFS variant leads to better predictive performance than the standard CFS and the baseline approach of no feature selection, when using Naïve Bayes and J48 decision tree induction as classification algorithms (although the difference in performance is very small in the results for J4.8). We also report the most relevant features selected by J48 across the datasets.