无差异图的最优贪心算法

P. Looges, S. Olariu
{"title":"无差异图的最优贪心算法","authors":"P. Looges, S. Olariu","doi":"10.1109/SECON.1992.202324","DOIUrl":null,"url":null,"abstract":"Investigates the class of indifference graphs that models the notion of indifference relation arising in social sciences and management. The authors examine algorithmic properties of indifference graphs. Recently it has been shown that indifference graphs are characterized by a very special ordering on their sets of vertices. It is shown that this linear order can be exploited in a natural way to obtain optimal greedy algorithms for a number of computational problems on indifference graphs, including finding a shortest path between two vertices, computing a maximum matching, the center, and a Hamiltonian path.<<ETX>>","PeriodicalId":230446,"journal":{"name":"Proceedings IEEE Southeastcon '92","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"Optimal greedy algorithms for indifference graphs\",\"authors\":\"P. Looges, S. Olariu\",\"doi\":\"10.1109/SECON.1992.202324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigates the class of indifference graphs that models the notion of indifference relation arising in social sciences and management. The authors examine algorithmic properties of indifference graphs. Recently it has been shown that indifference graphs are characterized by a very special ordering on their sets of vertices. It is shown that this linear order can be exploited in a natural way to obtain optimal greedy algorithms for a number of computational problems on indifference graphs, including finding a shortest path between two vertices, computing a maximum matching, the center, and a Hamiltonian path.<<ETX>>\",\"PeriodicalId\":230446,\"journal\":{\"name\":\"Proceedings IEEE Southeastcon '92\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Southeastcon '92\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1992.202324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Southeastcon '92","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1992.202324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

摘要

研究了在社会科学和管理学中出现的无差异关系概念的无差异图。作者研究了无差异图的算法性质。最近研究表明,无差异图的顶点集具有非常特殊的排序特征。结果表明,这种线性顺序可以以一种自然的方式被利用来获得无差异图上许多计算问题的最优贪婪算法,包括寻找两个顶点之间的最短路径,计算最大匹配,中心和哈密顿路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal greedy algorithms for indifference graphs
Investigates the class of indifference graphs that models the notion of indifference relation arising in social sciences and management. The authors examine algorithmic properties of indifference graphs. Recently it has been shown that indifference graphs are characterized by a very special ordering on their sets of vertices. It is shown that this linear order can be exploited in a natural way to obtain optimal greedy algorithms for a number of computational problems on indifference graphs, including finding a shortest path between two vertices, computing a maximum matching, the center, and a Hamiltonian path.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信