变形、断裂和摩擦过程

F. Louchet
{"title":"变形、断裂和摩擦过程","authors":"F. Louchet","doi":"10.1093/oso/9780198866930.003.0003","DOIUrl":null,"url":null,"abstract":"The main mechanical and physical quantities and concepts ruling deformation, fracture, and friction processes are recalled, with particular attention paid to the simplicity of the analysis, but without betraying the scientific validity of the arguments. We particularly discuss the difference between between elastic and plastic deformation, and quasistatic and dynamic loadings, essential in avalanche triggering mechanisms. The physical origin of Griffith’s rupture criterion that rules both fracture nucleation and propagation, and the transition between brittle and ductile failure processes, is thoroughly discussed. We also explain the physical meaning of the classical Coulomb’s friction law, showing why it can hardly apply to a non-conventional porous, brittle, and healable solid like snow.","PeriodicalId":237702,"journal":{"name":"Snow Avalanches","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation, Fracture, and Friction Processes\",\"authors\":\"F. Louchet\",\"doi\":\"10.1093/oso/9780198866930.003.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main mechanical and physical quantities and concepts ruling deformation, fracture, and friction processes are recalled, with particular attention paid to the simplicity of the analysis, but without betraying the scientific validity of the arguments. We particularly discuss the difference between between elastic and plastic deformation, and quasistatic and dynamic loadings, essential in avalanche triggering mechanisms. The physical origin of Griffith’s rupture criterion that rules both fracture nucleation and propagation, and the transition between brittle and ductile failure processes, is thoroughly discussed. We also explain the physical meaning of the classical Coulomb’s friction law, showing why it can hardly apply to a non-conventional porous, brittle, and healable solid like snow.\",\"PeriodicalId\":237702,\"journal\":{\"name\":\"Snow Avalanches\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Snow Avalanches\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198866930.003.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Snow Avalanches","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198866930.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回顾了决定变形、断裂和摩擦过程的主要力学和物理量和概念,特别注意分析的简单性,但不背叛论点的科学有效性。我们特别讨论了在雪崩触发机制中必不可少的弹性和塑性变形以及准静态和动态加载之间的区别。深入讨论了格里菲斯断裂准则的物理起源,该准则规定了断裂的形核和扩展,以及脆性和韧性破坏过程之间的过渡。我们还解释了经典库仑摩擦定律的物理意义,说明了为什么它很难适用于像雪这样的非常规多孔、易碎和可愈合的固体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformation, Fracture, and Friction Processes
The main mechanical and physical quantities and concepts ruling deformation, fracture, and friction processes are recalled, with particular attention paid to the simplicity of the analysis, but without betraying the scientific validity of the arguments. We particularly discuss the difference between between elastic and plastic deformation, and quasistatic and dynamic loadings, essential in avalanche triggering mechanisms. The physical origin of Griffith’s rupture criterion that rules both fracture nucleation and propagation, and the transition between brittle and ductile failure processes, is thoroughly discussed. We also explain the physical meaning of the classical Coulomb’s friction law, showing why it can hardly apply to a non-conventional porous, brittle, and healable solid like snow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信