{"title":"多芯-常规太阳能静物-太阳能热水系统的设计研究","authors":"Ashutosh Kumar Singh","doi":"10.1080/01425919508914292","DOIUrl":null,"url":null,"abstract":"There has been considerable effort as to the manner in which the productivity of solar stills is affected by many of the designs and operating variables. To assist in designing the stills of improved performance, design parameters involved in the operation of the system have been considered in this paper. Curves showing the magnitude of the effects of design changes on the productivity are presented. Numerical computations, which are based on energy balances of different components of this system, confirm the productivity improvement in between 23.6% to 51.2% depending on the water-flow-rate from the vertical water column on the multiwicks. This design incorporates a multiwick solar still and a conventional basin type solar still. Hot water at considerably higher than the ambient temperature may be obtained at different flow rate from this design as well.","PeriodicalId":162029,"journal":{"name":"International Journal of Solar Energy","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DESIGN STUDY OF A MULTIWICK-CUM-CONVENTIONAL SOLAR STILL-CUM-SOLAR HOT WATER SYSTEM\",\"authors\":\"Ashutosh Kumar Singh\",\"doi\":\"10.1080/01425919508914292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been considerable effort as to the manner in which the productivity of solar stills is affected by many of the designs and operating variables. To assist in designing the stills of improved performance, design parameters involved in the operation of the system have been considered in this paper. Curves showing the magnitude of the effects of design changes on the productivity are presented. Numerical computations, which are based on energy balances of different components of this system, confirm the productivity improvement in between 23.6% to 51.2% depending on the water-flow-rate from the vertical water column on the multiwicks. This design incorporates a multiwick solar still and a conventional basin type solar still. Hot water at considerably higher than the ambient temperature may be obtained at different flow rate from this design as well.\",\"PeriodicalId\":162029,\"journal\":{\"name\":\"International Journal of Solar Energy\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solar Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01425919508914292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solar Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01425919508914292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DESIGN STUDY OF A MULTIWICK-CUM-CONVENTIONAL SOLAR STILL-CUM-SOLAR HOT WATER SYSTEM
There has been considerable effort as to the manner in which the productivity of solar stills is affected by many of the designs and operating variables. To assist in designing the stills of improved performance, design parameters involved in the operation of the system have been considered in this paper. Curves showing the magnitude of the effects of design changes on the productivity are presented. Numerical computations, which are based on energy balances of different components of this system, confirm the productivity improvement in between 23.6% to 51.2% depending on the water-flow-rate from the vertical water column on the multiwicks. This design incorporates a multiwick solar still and a conventional basin type solar still. Hot water at considerably higher than the ambient temperature may be obtained at different flow rate from this design as well.