参数和非参数方法,以提高预测性能的缺失数据的存在

Faraj A. A. Bashir, Hua-Liang Wei
{"title":"参数和非参数方法,以提高预测性能的缺失数据的存在","authors":"Faraj A. A. Bashir, Hua-Liang Wei","doi":"10.1109/ICSTCC.2015.7321316","DOIUrl":null,"url":null,"abstract":"Most missing data analysis techniques have focused on using model parameter estimation which depends on modern statistical data analysis methods such as maximum likelihood and multiple imputation. In fact, these modern methods are better than traditional methods (for example, complete data analysis and mean imputation approaches), and in many particular applications can give unbiased parametric estimation. Because these modern approaches depend on linear parametric regression, they do not give good results, especially if the data distribution has highly nonlinear behaviour. This paper explains parametric estimation in cases of missing data, including an overview of parametric estimation with missing data, and provides accessible descriptions of nonlinear parametric and nonparametric estimation with missing data. In particular, this paper focuses on the effect of model selection methods on nonlinear parametric and nonparametric estimation in the presence of missing data. We also present analysis of an example to illustrate the performance of the two methods.","PeriodicalId":257135,"journal":{"name":"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"40 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Parametric and non-parametric methods to enhance prediction performance in the presence of missing data\",\"authors\":\"Faraj A. A. Bashir, Hua-Liang Wei\",\"doi\":\"10.1109/ICSTCC.2015.7321316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most missing data analysis techniques have focused on using model parameter estimation which depends on modern statistical data analysis methods such as maximum likelihood and multiple imputation. In fact, these modern methods are better than traditional methods (for example, complete data analysis and mean imputation approaches), and in many particular applications can give unbiased parametric estimation. Because these modern approaches depend on linear parametric regression, they do not give good results, especially if the data distribution has highly nonlinear behaviour. This paper explains parametric estimation in cases of missing data, including an overview of parametric estimation with missing data, and provides accessible descriptions of nonlinear parametric and nonparametric estimation with missing data. In particular, this paper focuses on the effect of model selection methods on nonlinear parametric and nonparametric estimation in the presence of missing data. We also present analysis of an example to illustrate the performance of the two methods.\",\"PeriodicalId\":257135,\"journal\":{\"name\":\"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)\",\"volume\":\"40 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCC.2015.7321316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 19th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC.2015.7321316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

大多数缺失数据分析技术都集中在模型参数估计上,而模型参数估计依赖于现代统计数据分析方法,如极大似然和多重插值。事实上,这些现代方法比传统方法(例如,完整数据分析和均值imputation方法)更好,并且在许多特定应用中可以给出无偏参数估计。由于这些现代方法依赖于线性参数回归,它们不能给出很好的结果,特别是当数据分布具有高度非线性行为时。本文解释了缺失数据情况下的参数估计,包括缺失数据情况下参数估计的概述,并提供了缺失数据情况下非线性参数估计和非参数估计的可访问描述。本文特别关注模型选择方法对缺失数据下的非线性参数和非参数估计的影响。我们还通过一个实例分析来说明这两种方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric and non-parametric methods to enhance prediction performance in the presence of missing data
Most missing data analysis techniques have focused on using model parameter estimation which depends on modern statistical data analysis methods such as maximum likelihood and multiple imputation. In fact, these modern methods are better than traditional methods (for example, complete data analysis and mean imputation approaches), and in many particular applications can give unbiased parametric estimation. Because these modern approaches depend on linear parametric regression, they do not give good results, especially if the data distribution has highly nonlinear behaviour. This paper explains parametric estimation in cases of missing data, including an overview of parametric estimation with missing data, and provides accessible descriptions of nonlinear parametric and nonparametric estimation with missing data. In particular, this paper focuses on the effect of model selection methods on nonlinear parametric and nonparametric estimation in the presence of missing data. We also present analysis of an example to illustrate the performance of the two methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信