{"title":"gSpan:基于图的子结构模式挖掘","authors":"Xifeng Yan, Jiawei Han","doi":"10.1109/ICDM.2002.1184038","DOIUrl":null,"url":null,"abstract":"We investigate new approaches for frequent graph-based pattern mining in graph datasets and propose a novel algorithm called gSpan (graph-based substructure pattern mining), which discovers frequent substructures without candidate generation. gSpan builds a new lexicographic order among graphs, and maps each graph to a unique minimum DFS code as its canonical label. Based on this lexicographic order gSpan adopts the depth-first search strategy to mine frequent connected subgraphs efficiently. Our performance study shows that gSpan substantially outperforms previous algorithms, sometimes by an order of magnitude.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2414","resultStr":"{\"title\":\"gSpan: graph-based substructure pattern mining\",\"authors\":\"Xifeng Yan, Jiawei Han\",\"doi\":\"10.1109/ICDM.2002.1184038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate new approaches for frequent graph-based pattern mining in graph datasets and propose a novel algorithm called gSpan (graph-based substructure pattern mining), which discovers frequent substructures without candidate generation. gSpan builds a new lexicographic order among graphs, and maps each graph to a unique minimum DFS code as its canonical label. Based on this lexicographic order gSpan adopts the depth-first search strategy to mine frequent connected subgraphs efficiently. Our performance study shows that gSpan substantially outperforms previous algorithms, sometimes by an order of magnitude.\",\"PeriodicalId\":405340,\"journal\":{\"name\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2414\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2002.1184038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1184038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We investigate new approaches for frequent graph-based pattern mining in graph datasets and propose a novel algorithm called gSpan (graph-based substructure pattern mining), which discovers frequent substructures without candidate generation. gSpan builds a new lexicographic order among graphs, and maps each graph to a unique minimum DFS code as its canonical label. Based on this lexicographic order gSpan adopts the depth-first search strategy to mine frequent connected subgraphs efficiently. Our performance study shows that gSpan substantially outperforms previous algorithms, sometimes by an order of magnitude.