Ting Gong, J. Xuan, Yitan Zhu, Huaizhou Li, R. Clarke, E. Hoffman, Y. Wang
{"title":"利用非负独立成分分析发现复合基因模块","authors":"Ting Gong, J. Xuan, Yitan Zhu, Huaizhou Li, R. Clarke, E. Hoffman, Y. Wang","doi":"10.1109/LSSA.2006.250434","DOIUrl":null,"url":null,"abstract":"Gene module discovery can provide comprehensive molecular portrait of biological regulation and functional genomics. We present a new analytic strategy - nonnegative independent component analysis to reveal some gene module composite. The results show that by grouping genes in the latent space, we can find statistically more significant enrichment of gene annotations within clusters. Further, this approach has been applied to a muscular dystrophy data set for gene module discovery","PeriodicalId":360097,"journal":{"name":"2006 IEEE/NLM Life Science Systems and Applications Workshop","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Composite Gene Module Discovery using Non-negative Independent Component Analysis\",\"authors\":\"Ting Gong, J. Xuan, Yitan Zhu, Huaizhou Li, R. Clarke, E. Hoffman, Y. Wang\",\"doi\":\"10.1109/LSSA.2006.250434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene module discovery can provide comprehensive molecular portrait of biological regulation and functional genomics. We present a new analytic strategy - nonnegative independent component analysis to reveal some gene module composite. The results show that by grouping genes in the latent space, we can find statistically more significant enrichment of gene annotations within clusters. Further, this approach has been applied to a muscular dystrophy data set for gene module discovery\",\"PeriodicalId\":360097,\"journal\":{\"name\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSSA.2006.250434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/NLM Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSSA.2006.250434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Composite Gene Module Discovery using Non-negative Independent Component Analysis
Gene module discovery can provide comprehensive molecular portrait of biological regulation and functional genomics. We present a new analytic strategy - nonnegative independent component analysis to reveal some gene module composite. The results show that by grouping genes in the latent space, we can find statistically more significant enrichment of gene annotations within clusters. Further, this approach has been applied to a muscular dystrophy data set for gene module discovery