基于多摄像头的智能交通目标精确检测

Zhinan Qiao, Andrew Sansom, M. McGuire, Andrew Kalaani, Xu Ma, Qing Yang, Song Fu
{"title":"基于多摄像头的智能交通目标精确检测","authors":"Zhinan Qiao, Andrew Sansom, M. McGuire, Andrew Kalaani, Xu Ma, Qing Yang, Song Fu","doi":"10.1109/MetroCAD48866.2020.00011","DOIUrl":null,"url":null,"abstract":"Recently, more and more attention has been paid to the connected object detection for better performance. One of the most interesting fields is learning from multiple resources in a connected fashion. In this paper, we present a connected object detection method using multiple cameras for the smart transportation system. The proposed architecture consists of three parts: an alignment framework, a deep multi-view fusion network and an object detection network. Experiments are conducted to illustrate the performance of our proposed architecture.","PeriodicalId":117440,"journal":{"name":"2020 International Conference on Connected and Autonomous Driving (MetroCAD)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate Object Detection in Smart Transportation Using Multiple Cameras\",\"authors\":\"Zhinan Qiao, Andrew Sansom, M. McGuire, Andrew Kalaani, Xu Ma, Qing Yang, Song Fu\",\"doi\":\"10.1109/MetroCAD48866.2020.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, more and more attention has been paid to the connected object detection for better performance. One of the most interesting fields is learning from multiple resources in a connected fashion. In this paper, we present a connected object detection method using multiple cameras for the smart transportation system. The proposed architecture consists of three parts: an alignment framework, a deep multi-view fusion network and an object detection network. Experiments are conducted to illustrate the performance of our proposed architecture.\",\"PeriodicalId\":117440,\"journal\":{\"name\":\"2020 International Conference on Connected and Autonomous Driving (MetroCAD)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Connected and Autonomous Driving (MetroCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroCAD48866.2020.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Connected and Autonomous Driving (MetroCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroCAD48866.2020.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,为了获得更好的检测性能,连接对象检测受到越来越多的关注。最有趣的领域之一是以连接的方式从多种资源中学习。本文提出了一种基于多摄像头的智能交通系统连接目标检测方法。该结构由三部分组成:对准框架、深度多视图融合网络和目标检测网络。实验证明了我们提出的架构的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate Object Detection in Smart Transportation Using Multiple Cameras
Recently, more and more attention has been paid to the connected object detection for better performance. One of the most interesting fields is learning from multiple resources in a connected fashion. In this paper, we present a connected object detection method using multiple cameras for the smart transportation system. The proposed architecture consists of three parts: an alignment framework, a deep multi-view fusion network and an object detection network. Experiments are conducted to illustrate the performance of our proposed architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信