考虑增量控制作用的多区域电力系统最优负荷频率控制

A. Kunya, M. Argin, S. Kucuksari
{"title":"考虑增量控制作用的多区域电力系统最优负荷频率控制","authors":"A. Kunya, M. Argin, S. Kucuksari","doi":"10.1109/TPEC.2019.8662140","DOIUrl":null,"url":null,"abstract":"For an economic and reliable operation of a power system, electrical power generation-demand balance must be sustained online. In modern power systems with multiple interconnected control areas (CA), altering the generation-demand does not only affect the system frequency but also leads to undesired deviations in power flows between CAs. To avert the catastrophic failure of the entire system, generation must always balance out the load demand so as to maintain frequency and tie-line power within prescribed limit. Thus, load frequency control (LFC), achieved by adjusting the MW outputs of generators, is applied. In this paper, model predictive control (MPC) based LFC in multi-area power system (MAPS) is presented. It is aimed at maintaining frequency of each CA and tie-line power within given limits. The conventional LFC is modified to consider the effect of incremental control action, in addition to the system dynamic constraints like generation rate constraint (GRC). The effectiveness of the proposed scheme is verified through time-based simulations on 8-generator, 4-area MAPS subjected to multiple load disturbances. The responses of the system is compared with traditional PID controller. The results reveal efficacy of the proposed scheme with 26.79% and 25.12% improvement of settling time and overshoot respectively over the PID controller.","PeriodicalId":424038,"journal":{"name":"2019 IEEE Texas Power and Energy Conference (TPEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal Load Frequency Control of Multi-Area Power System Considering Incremental Control Action\",\"authors\":\"A. Kunya, M. Argin, S. Kucuksari\",\"doi\":\"10.1109/TPEC.2019.8662140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an economic and reliable operation of a power system, electrical power generation-demand balance must be sustained online. In modern power systems with multiple interconnected control areas (CA), altering the generation-demand does not only affect the system frequency but also leads to undesired deviations in power flows between CAs. To avert the catastrophic failure of the entire system, generation must always balance out the load demand so as to maintain frequency and tie-line power within prescribed limit. Thus, load frequency control (LFC), achieved by adjusting the MW outputs of generators, is applied. In this paper, model predictive control (MPC) based LFC in multi-area power system (MAPS) is presented. It is aimed at maintaining frequency of each CA and tie-line power within given limits. The conventional LFC is modified to consider the effect of incremental control action, in addition to the system dynamic constraints like generation rate constraint (GRC). The effectiveness of the proposed scheme is verified through time-based simulations on 8-generator, 4-area MAPS subjected to multiple load disturbances. The responses of the system is compared with traditional PID controller. The results reveal efficacy of the proposed scheme with 26.79% and 25.12% improvement of settling time and overshoot respectively over the PID controller.\",\"PeriodicalId\":424038,\"journal\":{\"name\":\"2019 IEEE Texas Power and Energy Conference (TPEC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Texas Power and Energy Conference (TPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPEC.2019.8662140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC.2019.8662140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了使电力系统经济、可靠地运行,发电需求平衡必须保持在线状态。在具有多个互联控制区(CA)的现代电力系统中,改变发电需求不仅会影响系统频率,还会导致控制区之间的潮流产生不期望的偏差。为了避免整个系统的灾难性故障,发电必须始终平衡负载需求,使频率和配线功率保持在规定的范围内。因此,负载频率控制(LFC)是通过调整发电机的MW输出来实现的。提出了基于模型预测控制(MPC)的LFC在多区域电力系统中的应用。它的目的是保持每个CA的频率和联络线功率在给定的范围内。在考虑发电速率约束(GRC)等系统动态约束的基础上,对传统LFC进行了改进,考虑了增量控制作用的影响。通过多负载干扰下的8发电机4区map时序仿真,验证了该方案的有效性。将系统的响应与传统的PID控制器进行了比较。结果表明,与PID控制器相比,该方案的稳定时间和超调量分别提高了26.79%和25.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Load Frequency Control of Multi-Area Power System Considering Incremental Control Action
For an economic and reliable operation of a power system, electrical power generation-demand balance must be sustained online. In modern power systems with multiple interconnected control areas (CA), altering the generation-demand does not only affect the system frequency but also leads to undesired deviations in power flows between CAs. To avert the catastrophic failure of the entire system, generation must always balance out the load demand so as to maintain frequency and tie-line power within prescribed limit. Thus, load frequency control (LFC), achieved by adjusting the MW outputs of generators, is applied. In this paper, model predictive control (MPC) based LFC in multi-area power system (MAPS) is presented. It is aimed at maintaining frequency of each CA and tie-line power within given limits. The conventional LFC is modified to consider the effect of incremental control action, in addition to the system dynamic constraints like generation rate constraint (GRC). The effectiveness of the proposed scheme is verified through time-based simulations on 8-generator, 4-area MAPS subjected to multiple load disturbances. The responses of the system is compared with traditional PID controller. The results reveal efficacy of the proposed scheme with 26.79% and 25.12% improvement of settling time and overshoot respectively over the PID controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信