E. Lopes, H. Oliveira, Kelly Assis de Souza Gazolli
{"title":"生成聊天机器人作为支持铁路课程教学的工具","authors":"E. Lopes, H. Oliveira, Kelly Assis de Souza Gazolli","doi":"10.5753/eniac.2022.227611","DOIUrl":null,"url":null,"abstract":"Chatbots são sistemas de conversação capazes de simular interações utilizando linguagem natural. Essa tecnologia permite a interação com os usuários de forma rápida, e seu uso como ferramenta de apoio ao ensino oferece aos estudantes uma nova forma de acesso ao conteúdo. Este trabalho apresenta uma base de dados de domínio específico, bem como sua utilização na construção de um chatbot generativo para auxiliar alunos na área de Ferrovias. Para isso, foram utilizadas as redes neurais BiLSTM e GRU, ambas em uma arquitetura do tipo codificador-decodificador com mecanismo de atenção. Os experimentos realizados demonstraram que a arquitetura usando GRUs obteve melhor desempenho com base nas medidas de avaliação do BLEU e ROUGE-L.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chatbots Generativos como Ferramentas de Apoio ao Ensino em Cursos na Área de Ferrovias\",\"authors\":\"E. Lopes, H. Oliveira, Kelly Assis de Souza Gazolli\",\"doi\":\"10.5753/eniac.2022.227611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chatbots são sistemas de conversação capazes de simular interações utilizando linguagem natural. Essa tecnologia permite a interação com os usuários de forma rápida, e seu uso como ferramenta de apoio ao ensino oferece aos estudantes uma nova forma de acesso ao conteúdo. Este trabalho apresenta uma base de dados de domínio específico, bem como sua utilização na construção de um chatbot generativo para auxiliar alunos na área de Ferrovias. Para isso, foram utilizadas as redes neurais BiLSTM e GRU, ambas em uma arquitetura do tipo codificador-decodificador com mecanismo de atenção. Os experimentos realizados demonstraram que a arquitetura usando GRUs obteve melhor desempenho com base nas medidas de avaliação do BLEU e ROUGE-L.\",\"PeriodicalId\":165095,\"journal\":{\"name\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2022.227611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chatbots Generativos como Ferramentas de Apoio ao Ensino em Cursos na Área de Ferrovias
Chatbots são sistemas de conversação capazes de simular interações utilizando linguagem natural. Essa tecnologia permite a interação com os usuários de forma rápida, e seu uso como ferramenta de apoio ao ensino oferece aos estudantes uma nova forma de acesso ao conteúdo. Este trabalho apresenta uma base de dados de domínio específico, bem como sua utilização na construção de um chatbot generativo para auxiliar alunos na área de Ferrovias. Para isso, foram utilizadas as redes neurais BiLSTM e GRU, ambas em uma arquitetura do tipo codificador-decodificador com mecanismo de atenção. Os experimentos realizados demonstraram que a arquitetura usando GRUs obteve melhor desempenho com base nas medidas de avaliação do BLEU e ROUGE-L.