基于姿态的视频摘要聚类方法比较

Cagdas Bas, Nazli Ikizler-Cinbis
{"title":"基于姿态的视频摘要聚类方法比较","authors":"Cagdas Bas, Nazli Ikizler-Cinbis","doi":"10.1109/SIU.2013.6531504","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to compare and evaluate different methods for clustering human action poses for video summarization. In this respect, three different clustering approaches are compared. These are the commonly known clustering algorithm “K-means”, a spectral clustering method “Normalized Cuts” and a new clustering method “Affinity Propagation”. These algorithms are utilized and compared with respect to their performance on clustering action poses on videos that contain different human actions. The experimental results demonstrate that k-means algorithm is more effective for the purpose of pose clustering and video summary generation.","PeriodicalId":168462,"journal":{"name":"2013 21st Signal Processing and Communications Applications Conference (SIU)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of clustering methods for pose based video summarization\",\"authors\":\"Cagdas Bas, Nazli Ikizler-Cinbis\",\"doi\":\"10.1109/SIU.2013.6531504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to compare and evaluate different methods for clustering human action poses for video summarization. In this respect, three different clustering approaches are compared. These are the commonly known clustering algorithm “K-means”, a spectral clustering method “Normalized Cuts” and a new clustering method “Affinity Propagation”. These algorithms are utilized and compared with respect to their performance on clustering action poses on videos that contain different human actions. The experimental results demonstrate that k-means algorithm is more effective for the purpose of pose clustering and video summary generation.\",\"PeriodicalId\":168462,\"journal\":{\"name\":\"2013 21st Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 21st Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2013.6531504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2013.6531504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是比较和评估不同的方法聚类人类动作姿势视频摘要。在这方面,比较了三种不同的聚类方法。这三种聚类方法分别是常用的聚类算法“K-means”、谱聚类方法“Normalized Cuts”和新型聚类方法“Affinity Propagation”。利用并比较了这些算法在包含不同人类动作的视频上聚类动作姿势的性能。实验结果表明,k-means算法在姿态聚类和视频摘要生成方面更为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of clustering methods for pose based video summarization
The aim of this paper is to compare and evaluate different methods for clustering human action poses for video summarization. In this respect, three different clustering approaches are compared. These are the commonly known clustering algorithm “K-means”, a spectral clustering method “Normalized Cuts” and a new clustering method “Affinity Propagation”. These algorithms are utilized and compared with respect to their performance on clustering action poses on videos that contain different human actions. The experimental results demonstrate that k-means algorithm is more effective for the purpose of pose clustering and video summary generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信