{"title":"在最优子空间中发现非冗余K-means聚类","authors":"Dominik Mautz, Wei Ye, C. Plant, C. Böhm","doi":"10.1145/3219819.3219945","DOIUrl":null,"url":null,"abstract":"A huge object collection in high-dimensional space can often be clustered in more than one way, for instance, objects could be clustered by their shape or alternatively by their color. Each grouping represents a different view of the data set. The new research field of non-redundant clustering addresses this class of problems. In this paper, we follow the approach that different, non-redundant k-means-like clusterings may exist in different, arbitrarily oriented subspaces of the high-dimensional space. We assume that these subspaces (and optionally a further noise space without any cluster structure) are orthogonal to each other. This assumption enables a particularly rigorous mathematical treatment of the non-redundant clustering problem and thus a particularly efficient algorithm, which we call Nr-Kmeans (for non-redundant k-means). The superiority of our algorithm is demonstrated both theoretically, as well as in extensive experiments.","PeriodicalId":322066,"journal":{"name":"Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Discovering Non-Redundant K-means Clusterings in Optimal Subspaces\",\"authors\":\"Dominik Mautz, Wei Ye, C. Plant, C. Böhm\",\"doi\":\"10.1145/3219819.3219945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A huge object collection in high-dimensional space can often be clustered in more than one way, for instance, objects could be clustered by their shape or alternatively by their color. Each grouping represents a different view of the data set. The new research field of non-redundant clustering addresses this class of problems. In this paper, we follow the approach that different, non-redundant k-means-like clusterings may exist in different, arbitrarily oriented subspaces of the high-dimensional space. We assume that these subspaces (and optionally a further noise space without any cluster structure) are orthogonal to each other. This assumption enables a particularly rigorous mathematical treatment of the non-redundant clustering problem and thus a particularly efficient algorithm, which we call Nr-Kmeans (for non-redundant k-means). The superiority of our algorithm is demonstrated both theoretically, as well as in extensive experiments.\",\"PeriodicalId\":322066,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3219819.3219945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3219819.3219945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discovering Non-Redundant K-means Clusterings in Optimal Subspaces
A huge object collection in high-dimensional space can often be clustered in more than one way, for instance, objects could be clustered by their shape or alternatively by their color. Each grouping represents a different view of the data set. The new research field of non-redundant clustering addresses this class of problems. In this paper, we follow the approach that different, non-redundant k-means-like clusterings may exist in different, arbitrarily oriented subspaces of the high-dimensional space. We assume that these subspaces (and optionally a further noise space without any cluster structure) are orthogonal to each other. This assumption enables a particularly rigorous mathematical treatment of the non-redundant clustering problem and thus a particularly efficient algorithm, which we call Nr-Kmeans (for non-redundant k-means). The superiority of our algorithm is demonstrated both theoretically, as well as in extensive experiments.