{"title":"振动压电微谐振器的水动力载荷","authors":"H. Qiu, H. Seidel","doi":"10.5772/INTECHOPEN.77731","DOIUrl":null,"url":null,"abstract":"The dynamics of micro-piezoelectric resonators can be profoundly affected by immersion in fluids. Aluminum nitride-based piezoelectric microresonators are fabricated and tested under controlled pressures in several gases. The cases on microresonator vibrating in fluid can be broadly divided into: (i) those that deal with vibration in free space and (ii) close to a surface. For the first case, experimental and analytical results for the hydrodynamic loading characteristics of the resonators at different resonant modes have been investigated, as well as the influences of fluid viscosity and compressibility. For the second case, most prior efforts have been focused on squeeze-film damping with very narrow gaps, while in many practical applications, the resonators vibrate close to a surface with a moderate distance. Experiments by using a micro-bridge resonator with a big range of gaps are performed and compared with predictions from theoretical models.","PeriodicalId":302162,"journal":{"name":"Piezoelectricity - Organic and Inorganic Materials and Applications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hydrodynamic Loading on Vibrating Piezoelectric Microresonators\",\"authors\":\"H. Qiu, H. Seidel\",\"doi\":\"10.5772/INTECHOPEN.77731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of micro-piezoelectric resonators can be profoundly affected by immersion in fluids. Aluminum nitride-based piezoelectric microresonators are fabricated and tested under controlled pressures in several gases. The cases on microresonator vibrating in fluid can be broadly divided into: (i) those that deal with vibration in free space and (ii) close to a surface. For the first case, experimental and analytical results for the hydrodynamic loading characteristics of the resonators at different resonant modes have been investigated, as well as the influences of fluid viscosity and compressibility. For the second case, most prior efforts have been focused on squeeze-film damping with very narrow gaps, while in many practical applications, the resonators vibrate close to a surface with a moderate distance. Experiments by using a micro-bridge resonator with a big range of gaps are performed and compared with predictions from theoretical models.\",\"PeriodicalId\":302162,\"journal\":{\"name\":\"Piezoelectricity - Organic and Inorganic Materials and Applications\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Piezoelectricity - Organic and Inorganic Materials and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.77731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Piezoelectricity - Organic and Inorganic Materials and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.77731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrodynamic Loading on Vibrating Piezoelectric Microresonators
The dynamics of micro-piezoelectric resonators can be profoundly affected by immersion in fluids. Aluminum nitride-based piezoelectric microresonators are fabricated and tested under controlled pressures in several gases. The cases on microresonator vibrating in fluid can be broadly divided into: (i) those that deal with vibration in free space and (ii) close to a surface. For the first case, experimental and analytical results for the hydrodynamic loading characteristics of the resonators at different resonant modes have been investigated, as well as the influences of fluid viscosity and compressibility. For the second case, most prior efforts have been focused on squeeze-film damping with very narrow gaps, while in many practical applications, the resonators vibrate close to a surface with a moderate distance. Experiments by using a micro-bridge resonator with a big range of gaps are performed and compared with predictions from theoretical models.