网络入侵检测的动态加权投票分类器

R. Zhang
{"title":"网络入侵检测的动态加权投票分类器","authors":"R. Zhang","doi":"10.1109/MLISE57402.2022.00076","DOIUrl":null,"url":null,"abstract":"Network security is important for countries, companies, and other governments. Network intrusion detection becomes more and more critical for numerous applications. In network intrusion detection, ensembles are often used to improve the performance of single classifiers. However, how to assign weights for the different classifiers is a problem. Instead of using the simple majority voting method, multiple ways to assign global weights are introduced to achieve better performance. In this paper, a new way of dynamically updating weights while predicting is proposed and applied to the classification problem on the UNSW-2015 dataset. The result shows that the dynamic weighted voting classifier performs better than the fixed weighted voting and simple majority rule voting in general.","PeriodicalId":350291,"journal":{"name":"2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)","volume":"19 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Weighted Voting Classifier for Network Intrusion Detection\",\"authors\":\"R. Zhang\",\"doi\":\"10.1109/MLISE57402.2022.00076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network security is important for countries, companies, and other governments. Network intrusion detection becomes more and more critical for numerous applications. In network intrusion detection, ensembles are often used to improve the performance of single classifiers. However, how to assign weights for the different classifiers is a problem. Instead of using the simple majority voting method, multiple ways to assign global weights are introduced to achieve better performance. In this paper, a new way of dynamically updating weights while predicting is proposed and applied to the classification problem on the UNSW-2015 dataset. The result shows that the dynamic weighted voting classifier performs better than the fixed weighted voting and simple majority rule voting in general.\",\"PeriodicalId\":350291,\"journal\":{\"name\":\"2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)\",\"volume\":\"19 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLISE57402.2022.00076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLISE57402.2022.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络安全对国家、公司和其他政府都很重要。网络入侵检测在众多应用中变得越来越重要。在网络入侵检测中,集成通常用于提高单个分类器的性能。然而,如何为不同的分类器分配权重是一个问题。为了获得更好的性能,引入了多种分配全局权重的方法,而不是使用简单的多数投票方法。本文提出了一种预测时动态更新权重的新方法,并将其应用于UNSW-2015数据集的分类问题。结果表明,动态加权投票分类器总体上优于固定加权投票和简单多数规则投票。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Weighted Voting Classifier for Network Intrusion Detection
Network security is important for countries, companies, and other governments. Network intrusion detection becomes more and more critical for numerous applications. In network intrusion detection, ensembles are often used to improve the performance of single classifiers. However, how to assign weights for the different classifiers is a problem. Instead of using the simple majority voting method, multiple ways to assign global weights are introduced to achieve better performance. In this paper, a new way of dynamically updating weights while predicting is proposed and applied to the classification problem on the UNSW-2015 dataset. The result shows that the dynamic weighted voting classifier performs better than the fixed weighted voting and simple majority rule voting in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信