数字信号处理(DSP)中的MVDR教学要点

Xiansheng Guo, Q. Wan, Ying Zhang, Jintao Liang
{"title":"数字信号处理(DSP)中的MVDR教学要点","authors":"Xiansheng Guo, Q. Wan, Ying Zhang, Jintao Liang","doi":"10.1109/TALE.2012.6360341","DOIUrl":null,"url":null,"abstract":"The minimum variance distortionless response (MVDR) beamformer is a classical filter to reduce the interference plus noise energy without distorting the desired signal. Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of a linear objective function over the intersection of the cone of positive semidefinite matrices. In this paper, we will show MVDR objective function can be derived from SDP objective function and vice versa. This conclusion can help students better understand MVDR from convex optimization and bring them a new insight of MVDR theory.","PeriodicalId":407302,"journal":{"name":"Proceedings of IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) 2012","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Teaching notes of MVDR in digital signal processing (DSP)\",\"authors\":\"Xiansheng Guo, Q. Wan, Ying Zhang, Jintao Liang\",\"doi\":\"10.1109/TALE.2012.6360341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minimum variance distortionless response (MVDR) beamformer is a classical filter to reduce the interference plus noise energy without distorting the desired signal. Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of a linear objective function over the intersection of the cone of positive semidefinite matrices. In this paper, we will show MVDR objective function can be derived from SDP objective function and vice versa. This conclusion can help students better understand MVDR from convex optimization and bring them a new insight of MVDR theory.\",\"PeriodicalId\":407302,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) 2012\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TALE.2012.6360341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TALE.2012.6360341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最小方差无失真响应(MVDR)波束形成器是一种经典的滤波器,可以在不扭曲期望信号的情况下减少干扰和噪声能量。半定规划(SDP)是凸优化的一个分支,主要研究线性目标函数在正半定矩阵锥的交点上的优化问题。在本文中,我们将证明MVDR目标函数可以由SDP目标函数导出,反之亦然。这一结论可以帮助学生更好地从凸优化的角度理解MVDR,使他们对MVDR理论有一个新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Teaching notes of MVDR in digital signal processing (DSP)
The minimum variance distortionless response (MVDR) beamformer is a classical filter to reduce the interference plus noise energy without distorting the desired signal. Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of a linear objective function over the intersection of the cone of positive semidefinite matrices. In this paper, we will show MVDR objective function can be derived from SDP objective function and vice versa. This conclusion can help students better understand MVDR from convex optimization and bring them a new insight of MVDR theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信