直流电阻率与大地电磁法联合反演的深度学习方法

A. Singh, D. Vashisth, S. Srivastava
{"title":"直流电阻率与大地电磁法联合反演的深度学习方法","authors":"A. Singh, D. Vashisth, S. Srivastava","doi":"10.3997/2214-4609.202113268","DOIUrl":null,"url":null,"abstract":"Summary Joint inversion of multiple geophysical datasets has its own set of advantages for interpreting the geology of an area. Using neural networks (NN), we propose the joint inversion of MT and DC apparent resistivity datasets to delineate the subsurface conductivity distribution. The NN model used is inspired by the Siamese networks to provide different prediction channels for the two different datasets before integrating them to get the layered earth parameters. The NN model trained on the specified range of model parameters has predicted each layers’ resistivity and thickness close to the true values for all the four types of resistivity distribution (A, Q, H, and K) for a three-layered earth model and takes advantage of the two different datasets to see through the equivalence problem to detect the thin second layer for an H type curve. The NN model accurately estimated the resistivity distribution even when the true data was corrupted with 10% Gaussian noise. Not only the method proposed provides good results for all the models considered but also saves time over other optimisation techniques where every model requires separate simulation. The method, therefore, proves to be a fast, efficient and reliable way for joint inversion of geophysical datasets.","PeriodicalId":265130,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning approach for joint inversion of DC Resistivity and MT data\",\"authors\":\"A. Singh, D. Vashisth, S. Srivastava\",\"doi\":\"10.3997/2214-4609.202113268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Joint inversion of multiple geophysical datasets has its own set of advantages for interpreting the geology of an area. Using neural networks (NN), we propose the joint inversion of MT and DC apparent resistivity datasets to delineate the subsurface conductivity distribution. The NN model used is inspired by the Siamese networks to provide different prediction channels for the two different datasets before integrating them to get the layered earth parameters. The NN model trained on the specified range of model parameters has predicted each layers’ resistivity and thickness close to the true values for all the four types of resistivity distribution (A, Q, H, and K) for a three-layered earth model and takes advantage of the two different datasets to see through the equivalence problem to detect the thin second layer for an H type curve. The NN model accurately estimated the resistivity distribution even when the true data was corrupted with 10% Gaussian noise. Not only the method proposed provides good results for all the models considered but also saves time over other optimisation techniques where every model requires separate simulation. The method, therefore, proves to be a fast, efficient and reliable way for joint inversion of geophysical datasets.\",\"PeriodicalId\":265130,\"journal\":{\"name\":\"82nd EAGE Annual Conference & Exhibition\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"82nd EAGE Annual Conference & Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.202113268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202113268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多个地球物理数据集的联合反演在解释一个地区的地质情况方面有其自身的优势。利用神经网络(NN),我们提出了大地电磁法和直流视电阻率数据的联合反演,以描绘地下电导率分布。所使用的神经网络模型受到Siamese网络的启发,为两个不同的数据集提供不同的预测通道,然后将它们集成以获得分层地球参数。在指定的模型参数范围上训练的神经网络模型对三层地球模型的所有四种电阻率分布(A、Q、H、K)预测的每层电阻率和厚度接近真实值,并利用两种不同的数据集通过等效问题检测H型曲线的薄第二层。当真实数据被10%的高斯噪声破坏时,神经网络模型也能准确地估计出电阻率分布。所提出的方法不仅对所有考虑的模型都提供了良好的结果,而且比其他需要单独模拟每个模型的优化技术节省了时间。结果表明,该方法是一种快速、高效、可靠的联合反演方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning approach for joint inversion of DC Resistivity and MT data
Summary Joint inversion of multiple geophysical datasets has its own set of advantages for interpreting the geology of an area. Using neural networks (NN), we propose the joint inversion of MT and DC apparent resistivity datasets to delineate the subsurface conductivity distribution. The NN model used is inspired by the Siamese networks to provide different prediction channels for the two different datasets before integrating them to get the layered earth parameters. The NN model trained on the specified range of model parameters has predicted each layers’ resistivity and thickness close to the true values for all the four types of resistivity distribution (A, Q, H, and K) for a three-layered earth model and takes advantage of the two different datasets to see through the equivalence problem to detect the thin second layer for an H type curve. The NN model accurately estimated the resistivity distribution even when the true data was corrupted with 10% Gaussian noise. Not only the method proposed provides good results for all the models considered but also saves time over other optimisation techniques where every model requires separate simulation. The method, therefore, proves to be a fast, efficient and reliable way for joint inversion of geophysical datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信