一种用于瞬态呈现的数据驱动压缩方法

Yun Liang, Mingqin Chen, Zesheng Huang, D. Gutierrez, A. Muñoz, Julio Marco
{"title":"一种用于瞬态呈现的数据驱动压缩方法","authors":"Yun Liang, Mingqin Chen, Zesheng Huang, D. Gutierrez, A. Muñoz, Julio Marco","doi":"10.1145/3306214.3338582","DOIUrl":null,"url":null,"abstract":"Monte Carlo methods for transient rendering have become a powerful instrument to generate reliable data in transient imaging applications, either for benchmarking, analysis, or as a source for data-driven approaches. However, due to the increased dimensionality of time-resolved renders, storage and data bandwidth are significant limiting constraints, where a single time-resolved render of a scene can take several hundreds of megabytes. In this work we propose a learning-based approach that makes use of deep encoder-decoder architectures to learn lower-dimensional feature vectors of time-resolved pixels. We demonstrate how our method is capable of compressing transient renders up to a factor of 32, and recover the full transient profile making use of a decoder. Additionally, we show how our learned features significantly mitigate variance on the recovered signal, addressing one of the pathological problems in transient rendering.","PeriodicalId":216038,"journal":{"name":"ACM SIGGRAPH 2019 Posters","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A data-driven compression method for transient rendering\",\"authors\":\"Yun Liang, Mingqin Chen, Zesheng Huang, D. Gutierrez, A. Muñoz, Julio Marco\",\"doi\":\"10.1145/3306214.3338582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monte Carlo methods for transient rendering have become a powerful instrument to generate reliable data in transient imaging applications, either for benchmarking, analysis, or as a source for data-driven approaches. However, due to the increased dimensionality of time-resolved renders, storage and data bandwidth are significant limiting constraints, where a single time-resolved render of a scene can take several hundreds of megabytes. In this work we propose a learning-based approach that makes use of deep encoder-decoder architectures to learn lower-dimensional feature vectors of time-resolved pixels. We demonstrate how our method is capable of compressing transient renders up to a factor of 32, and recover the full transient profile making use of a decoder. Additionally, we show how our learned features significantly mitigate variance on the recovered signal, addressing one of the pathological problems in transient rendering.\",\"PeriodicalId\":216038,\"journal\":{\"name\":\"ACM SIGGRAPH 2019 Posters\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2019 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3306214.3338582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2019 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3306214.3338582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

用于瞬态渲染的蒙特卡罗方法已经成为在瞬态成像应用中生成可靠数据的强大工具,无论是用于基准测试、分析,还是作为数据驱动方法的来源。然而,由于时间分辨率渲染的维度增加,存储和数据带宽是显着的限制约束,其中单个时间分辨率场景渲染可能需要数百兆字节。在这项工作中,我们提出了一种基于学习的方法,该方法利用深度编码器-解码器架构来学习时间分辨像素的低维特征向量。我们演示了我们的方法如何能够将瞬态渲染压缩到32倍,并利用解码器恢复完整的瞬态配置文件。此外,我们展示了我们学习的特征如何显著减轻恢复信号上的方差,解决了瞬态渲染中的一个病理问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A data-driven compression method for transient rendering
Monte Carlo methods for transient rendering have become a powerful instrument to generate reliable data in transient imaging applications, either for benchmarking, analysis, or as a source for data-driven approaches. However, due to the increased dimensionality of time-resolved renders, storage and data bandwidth are significant limiting constraints, where a single time-resolved render of a scene can take several hundreds of megabytes. In this work we propose a learning-based approach that makes use of deep encoder-decoder architectures to learn lower-dimensional feature vectors of time-resolved pixels. We demonstrate how our method is capable of compressing transient renders up to a factor of 32, and recover the full transient profile making use of a decoder. Additionally, we show how our learned features significantly mitigate variance on the recovered signal, addressing one of the pathological problems in transient rendering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信