标签噪声下多标签分类器的鲁棒学习

Himanshu Kumar, Naresh Manwani, P. Sastry
{"title":"标签噪声下多标签分类器的鲁棒学习","authors":"Himanshu Kumar, Naresh Manwani, P. Sastry","doi":"10.1145/3371158.3371169","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of robust learning of multi-label classifiers when the training data has label noise. We consider learning algorithms in the risk-minimization framework. We define what we call symmetric label noise in multi-label settings which is a useful noise model for many random errors in the labeling of data. We prove that risk minimization is robust to symmetric label noise if the loss function satisfies some conditions. We show that Hamming loss and a surrogate of Hamming loss satisfy these sufficient conditions and hence are robust. By learning feedforward neural networks on some benchmark multi-label datasets, we provide empirical evidence to illustrate our theoretical results on the robust learning of multi-label classifiers under label noise.","PeriodicalId":360747,"journal":{"name":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Robust Learning of Multi-Label Classifiers under Label Noise\",\"authors\":\"Himanshu Kumar, Naresh Manwani, P. Sastry\",\"doi\":\"10.1145/3371158.3371169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of robust learning of multi-label classifiers when the training data has label noise. We consider learning algorithms in the risk-minimization framework. We define what we call symmetric label noise in multi-label settings which is a useful noise model for many random errors in the labeling of data. We prove that risk minimization is robust to symmetric label noise if the loss function satisfies some conditions. We show that Hamming loss and a surrogate of Hamming loss satisfy these sufficient conditions and hence are robust. By learning feedforward neural networks on some benchmark multi-label datasets, we provide empirical evidence to illustrate our theoretical results on the robust learning of multi-label classifiers under label noise.\",\"PeriodicalId\":360747,\"journal\":{\"name\":\"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3371158.3371169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3371158.3371169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了多标签分类器在训练数据中存在标签噪声时的鲁棒学习问题。我们在风险最小化框架中考虑学习算法。我们在多标签设置中定义了对称标签噪声,这是一种有用的噪声模型,用于处理数据标记中的许多随机误差。当损失函数满足一定条件时,证明了风险最小化算法对对称标签噪声具有鲁棒性。我们证明了汉明损失和汉明损失的替代物满足这些充分条件,因此是鲁棒的。通过在一些基准多标签数据集上学习前馈神经网络,我们提供了经验证据来说明我们在标签噪声下多标签分类器鲁棒学习的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Learning of Multi-Label Classifiers under Label Noise
In this paper, we address the problem of robust learning of multi-label classifiers when the training data has label noise. We consider learning algorithms in the risk-minimization framework. We define what we call symmetric label noise in multi-label settings which is a useful noise model for many random errors in the labeling of data. We prove that risk minimization is robust to symmetric label noise if the loss function satisfies some conditions. We show that Hamming loss and a surrogate of Hamming loss satisfy these sufficient conditions and hence are robust. By learning feedforward neural networks on some benchmark multi-label datasets, we provide empirical evidence to illustrate our theoretical results on the robust learning of multi-label classifiers under label noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信