利用遗传算法优化神经网络结构和学习参数

Seung-Soo Han, G. May
{"title":"利用遗传算法优化神经网络结构和学习参数","authors":"Seung-Soo Han, G. May","doi":"10.1109/TAI.1996.560452","DOIUrl":null,"url":null,"abstract":"Neural network models of semiconductor manufacturing processes offer advantages in accuracy and generalization over traditional methods. However, model development is complicated by the fact that backpropagation neural networks contain several adjustable parameters whose optimal values are initially unknown. These include learning rate, momentum, training tolerance, and the number of hidden layer neurons. This paper investigates the use of genetic algorithms (GAs) to determine the optimal neural network parameters for modeling plasma-enhanced chemical vapor deposition (PECVD) of silicon dioxide films. To find an optimal parameter set for the PECVD models, a performance matrix is defined and used in the GA objective function. This index accounts for both prediction error as well as training error, with a higher emphasis on reducing prediction error. Results of the genetic search are compared with a similar search using the simplex algorithm. The GA search performed approximately 10% better in reducing training error and 66% better in reducing prediction error.","PeriodicalId":209171,"journal":{"name":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Optimization of neural network structure and learning parameters using genetic algorithms\",\"authors\":\"Seung-Soo Han, G. May\",\"doi\":\"10.1109/TAI.1996.560452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural network models of semiconductor manufacturing processes offer advantages in accuracy and generalization over traditional methods. However, model development is complicated by the fact that backpropagation neural networks contain several adjustable parameters whose optimal values are initially unknown. These include learning rate, momentum, training tolerance, and the number of hidden layer neurons. This paper investigates the use of genetic algorithms (GAs) to determine the optimal neural network parameters for modeling plasma-enhanced chemical vapor deposition (PECVD) of silicon dioxide films. To find an optimal parameter set for the PECVD models, a performance matrix is defined and used in the GA objective function. This index accounts for both prediction error as well as training error, with a higher emphasis on reducing prediction error. Results of the genetic search are compared with a similar search using the simplex algorithm. The GA search performed approximately 10% better in reducing training error and 66% better in reducing prediction error.\",\"PeriodicalId\":209171,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1996.560452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1996.560452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

与传统方法相比,半导体制造过程的神经网络模型在准确性和通用性方面具有优势。然而,由于反向传播神经网络包含几个可调参数,其最优值最初是未知的,因此模型开发变得复杂。这些包括学习率、动量、训练容忍度和隐藏层神经元的数量。本文研究了使用遗传算法(GAs)来确定模拟等离子体增强化学气相沉积(PECVD)二氧化硅薄膜的最佳神经网络参数。为了找到PECVD模型的最优参数集,定义了性能矩阵,并将其用于遗传算法目标函数中。该指标既考虑预测误差,也考虑训练误差,更强调减少预测误差。将遗传搜索结果与使用单纯形算法的类似搜索结果进行了比较。遗传算法在减少训练误差方面的性能提高了约10%,在减少预测误差方面的性能提高了66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of neural network structure and learning parameters using genetic algorithms
Neural network models of semiconductor manufacturing processes offer advantages in accuracy and generalization over traditional methods. However, model development is complicated by the fact that backpropagation neural networks contain several adjustable parameters whose optimal values are initially unknown. These include learning rate, momentum, training tolerance, and the number of hidden layer neurons. This paper investigates the use of genetic algorithms (GAs) to determine the optimal neural network parameters for modeling plasma-enhanced chemical vapor deposition (PECVD) of silicon dioxide films. To find an optimal parameter set for the PECVD models, a performance matrix is defined and used in the GA objective function. This index accounts for both prediction error as well as training error, with a higher emphasis on reducing prediction error. Results of the genetic search are compared with a similar search using the simplex algorithm. The GA search performed approximately 10% better in reducing training error and 66% better in reducing prediction error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信