一个分岔图能包含环路吗?

G. Palshin, P. Ryabov, S. Sokolov
{"title":"一个分岔图能包含环路吗?","authors":"G. Palshin, P. Ryabov, S. Sokolov","doi":"10.1109/NIR52917.2021.9666072","DOIUrl":null,"url":null,"abstract":"The bifurcation diagram plays a major role in the study of the phase topology of completely Liouville-integrable Hamiltonian systems. In the works of A.T. Fomenko and A.V. Bolsinov, the problem of the permissible form of bifurcation diagrams is formulated. In particular, can a bifurcation diagram contain loops? The answer is positive. In this paper, the critical set of the integral mapping and the bifurcation diagram, which contains or almost contains a loop, is given by the example of the vortex dynamics problem.","PeriodicalId":333109,"journal":{"name":"2021 International Conference \"Nonlinearity, Information and Robotics\" (NIR)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can a bifurcation diagram contain loops?\",\"authors\":\"G. Palshin, P. Ryabov, S. Sokolov\",\"doi\":\"10.1109/NIR52917.2021.9666072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bifurcation diagram plays a major role in the study of the phase topology of completely Liouville-integrable Hamiltonian systems. In the works of A.T. Fomenko and A.V. Bolsinov, the problem of the permissible form of bifurcation diagrams is formulated. In particular, can a bifurcation diagram contain loops? The answer is positive. In this paper, the critical set of the integral mapping and the bifurcation diagram, which contains or almost contains a loop, is given by the example of the vortex dynamics problem.\",\"PeriodicalId\":333109,\"journal\":{\"name\":\"2021 International Conference \\\"Nonlinearity, Information and Robotics\\\" (NIR)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference \\\"Nonlinearity, Information and Robotics\\\" (NIR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NIR52917.2021.9666072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference \"Nonlinearity, Information and Robotics\" (NIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NIR52917.2021.9666072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分岔图在研究完全liouville可积哈密顿系统的相拓扑中起着重要的作用。在A.T. Fomenko和A.V. Bolsinov的著作中,提出了分支图的许用形式问题。特别是,一个分岔图可以包含环路吗?答案是肯定的。本文以涡旋动力学问题为例,给出了包含或几乎包含环路的积分映射和分岔图的临界集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can a bifurcation diagram contain loops?
The bifurcation diagram plays a major role in the study of the phase topology of completely Liouville-integrable Hamiltonian systems. In the works of A.T. Fomenko and A.V. Bolsinov, the problem of the permissible form of bifurcation diagrams is formulated. In particular, can a bifurcation diagram contain loops? The answer is positive. In this paper, the critical set of the integral mapping and the bifurcation diagram, which contains or almost contains a loop, is given by the example of the vortex dynamics problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信