基于原型的类特定非线性子空间学习用于大规模人脸验证

Alexandros Iosifidis, M. Gabbouj
{"title":"基于原型的类特定非线性子空间学习用于大规模人脸验证","authors":"Alexandros Iosifidis, M. Gabbouj","doi":"10.1109/IPTA.2016.7820988","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a face verification method which is based on non-linear class-specific discriminant subspace learning. We follow the Kernel Spectral Regression approach to this end and employ a prototype-based approximate kernel regression scheme in order to scale the method for large-scale nonlinear discriminant learning. Experiments on two publicly available facial image databases show the effectiveness of the proposed approach, since it scales well with the data size and outperforms related approaches.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prototype-based class-specific nonlinear subspace learning for large-scale face verification\",\"authors\":\"Alexandros Iosifidis, M. Gabbouj\",\"doi\":\"10.1109/IPTA.2016.7820988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a face verification method which is based on non-linear class-specific discriminant subspace learning. We follow the Kernel Spectral Regression approach to this end and employ a prototype-based approximate kernel regression scheme in order to scale the method for large-scale nonlinear discriminant learning. Experiments on two publicly available facial image databases show the effectiveness of the proposed approach, since it scales well with the data size and outperforms related approaches.\",\"PeriodicalId\":123429,\"journal\":{\"name\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2016.7820988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于非线性类特异性判别子空间学习的人脸验证方法。为此,我们采用核谱回归方法,并采用基于原型的近似核回归方案,以扩展大规模非线性判别学习的方法。在两个公开可用的面部图像数据库上的实验表明,该方法的有效性,因为它可以很好地随数据大小扩展,并且优于相关方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prototype-based class-specific nonlinear subspace learning for large-scale face verification
In this paper, we describe a face verification method which is based on non-linear class-specific discriminant subspace learning. We follow the Kernel Spectral Regression approach to this end and employ a prototype-based approximate kernel regression scheme in order to scale the method for large-scale nonlinear discriminant learning. Experiments on two publicly available facial image databases show the effectiveness of the proposed approach, since it scales well with the data size and outperforms related approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信