通过仿冒过滤器进行差异私有变量选择

Mehrdad Pournaderi, Yu Xiang
{"title":"通过仿冒过滤器进行差异私有变量选择","authors":"Mehrdad Pournaderi, Yu Xiang","doi":"10.1109/mlsp52302.2021.9596470","DOIUrl":null,"url":null,"abstract":"The knockoff filter, recently developed by Barber and Candès, is an effective procedure to perform variable selection with a controlled false discovery rate (FDR). We propose a private version of the knockoff filter by incorporating Gaussian and Laplace mechanisms, and show that variable selection with controlled FDR can be achieved. Simulations demonstrate that our setting has reasonable statistical power.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Differentially Private Variable Selection via the Knockoff Filter\",\"authors\":\"Mehrdad Pournaderi, Yu Xiang\",\"doi\":\"10.1109/mlsp52302.2021.9596470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The knockoff filter, recently developed by Barber and Candès, is an effective procedure to perform variable selection with a controlled false discovery rate (FDR). We propose a private version of the knockoff filter by incorporating Gaussian and Laplace mechanisms, and show that variable selection with controlled FDR can be achieved. Simulations demonstrate that our setting has reasonable statistical power.\",\"PeriodicalId\":156116,\"journal\":{\"name\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mlsp52302.2021.9596470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

仿冒过滤器是Barber和candires最近开发的一种有效的程序,可以在控制错误发现率(FDR)的情况下进行变量选择。我们通过结合高斯和拉普拉斯机制提出了一个私有版本的仿造滤波器,并表明可以实现具有控制FDR的变量选择。仿真结果表明,我们的设置具有合理的统计能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentially Private Variable Selection via the Knockoff Filter
The knockoff filter, recently developed by Barber and Candès, is an effective procedure to perform variable selection with a controlled false discovery rate (FDR). We propose a private version of the knockoff filter by incorporating Gaussian and Laplace mechanisms, and show that variable selection with controlled FDR can be achieved. Simulations demonstrate that our setting has reasonable statistical power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信