{"title":"通过仿冒过滤器进行差异私有变量选择","authors":"Mehrdad Pournaderi, Yu Xiang","doi":"10.1109/mlsp52302.2021.9596470","DOIUrl":null,"url":null,"abstract":"The knockoff filter, recently developed by Barber and Candès, is an effective procedure to perform variable selection with a controlled false discovery rate (FDR). We propose a private version of the knockoff filter by incorporating Gaussian and Laplace mechanisms, and show that variable selection with controlled FDR can be achieved. Simulations demonstrate that our setting has reasonable statistical power.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Differentially Private Variable Selection via the Knockoff Filter\",\"authors\":\"Mehrdad Pournaderi, Yu Xiang\",\"doi\":\"10.1109/mlsp52302.2021.9596470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The knockoff filter, recently developed by Barber and Candès, is an effective procedure to perform variable selection with a controlled false discovery rate (FDR). We propose a private version of the knockoff filter by incorporating Gaussian and Laplace mechanisms, and show that variable selection with controlled FDR can be achieved. Simulations demonstrate that our setting has reasonable statistical power.\",\"PeriodicalId\":156116,\"journal\":{\"name\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mlsp52302.2021.9596470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differentially Private Variable Selection via the Knockoff Filter
The knockoff filter, recently developed by Barber and Candès, is an effective procedure to perform variable selection with a controlled false discovery rate (FDR). We propose a private version of the knockoff filter by incorporating Gaussian and Laplace mechanisms, and show that variable selection with controlled FDR can be achieved. Simulations demonstrate that our setting has reasonable statistical power.