用于隐私保护的谜题人脸验证算法

Binod Bhattarai, A. Mignon, F. Jurie, T. Furon
{"title":"用于隐私保护的谜题人脸验证算法","authors":"Binod Bhattarai, A. Mignon, F. Jurie, T. Furon","doi":"10.1109/WIFS.2014.7084305","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach for de-identifying face images, i.e. for preventing automatic matching with public face collections. The overall motivation is to offer tools for privacy protection on social networks. We address this question by drawing a parallel between face de-identification and oracle attacks in digital watermarking. In our case, the identity of the face is seen as the watermark to be removed. Inspired by oracle attacks, we forge de-identified faces by superimposing a collection of carefully designed noise patterns onto the original face. The modification of the image is controlled to minimize the probability of good recognition while minimizing the distortion. In addition, these de-identified images are - by construction - made robust to counter attacks such as blurring. We present an experimental validation in which we de-identify LFW faces and show that resulting images are still recognized by human beings while deceiving a state-of-the-art face recognition algorithm.","PeriodicalId":220523,"journal":{"name":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Puzzling face verification algorithms for privacy protection\",\"authors\":\"Binod Bhattarai, A. Mignon, F. Jurie, T. Furon\",\"doi\":\"10.1109/WIFS.2014.7084305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach for de-identifying face images, i.e. for preventing automatic matching with public face collections. The overall motivation is to offer tools for privacy protection on social networks. We address this question by drawing a parallel between face de-identification and oracle attacks in digital watermarking. In our case, the identity of the face is seen as the watermark to be removed. Inspired by oracle attacks, we forge de-identified faces by superimposing a collection of carefully designed noise patterns onto the original face. The modification of the image is controlled to minimize the probability of good recognition while minimizing the distortion. In addition, these de-identified images are - by construction - made robust to counter attacks such as blurring. We present an experimental validation in which we de-identify LFW faces and show that resulting images are still recognized by human beings while deceiving a state-of-the-art face recognition algorithm.\",\"PeriodicalId\":220523,\"journal\":{\"name\":\"2014 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS.2014.7084305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2014.7084305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种新的人脸图像去识别方法,即防止与公共人脸集合的自动匹配。总的动机是在社交网络上提供保护隐私的工具。我们通过在数字水印中绘制人脸去识别和oracle攻击之间的并行来解决这个问题。在我们的例子中,人脸的身份被视为要去除的水印。受甲骨文攻击的启发,我们通过在原始面部上叠加一系列精心设计的噪声模式来伪造去识别的面部。控制图像的修改以最小化良好识别的概率,同时最小化失真。此外,通过构造,这些去识别的图像对诸如模糊之类的攻击具有鲁棒性。我们提出了一项实验验证,其中我们去识别LFW面部,并表明生成的图像在欺骗最先进的面部识别算法的同时仍然被人类识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Puzzling face verification algorithms for privacy protection
This paper presents a new approach for de-identifying face images, i.e. for preventing automatic matching with public face collections. The overall motivation is to offer tools for privacy protection on social networks. We address this question by drawing a parallel between face de-identification and oracle attacks in digital watermarking. In our case, the identity of the face is seen as the watermark to be removed. Inspired by oracle attacks, we forge de-identified faces by superimposing a collection of carefully designed noise patterns onto the original face. The modification of the image is controlled to minimize the probability of good recognition while minimizing the distortion. In addition, these de-identified images are - by construction - made robust to counter attacks such as blurring. We present an experimental validation in which we de-identify LFW faces and show that resulting images are still recognized by human beings while deceiving a state-of-the-art face recognition algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信