估计信息工程专业学生内部转移的预测模型

Jacqueline Köhler, F. Robles, J. Jara
{"title":"估计信息工程专业学生内部转移的预测模型","authors":"Jacqueline Köhler, F. Robles, J. Jara","doi":"10.1109/SCCC51225.2020.9281230","DOIUrl":null,"url":null,"abstract":"Student dropout is a significant problem affecting higher education institutions. This phenomenon is the result of multiple causes and has different forms. The aim of this work was to predict which students of the Departamento de Ingeniería Informática, Universidad de Santiago de Chile, will migrate to a different programme. For this purpose, we considered logistic regression models and support vector machines (SVM) with linear and radial kernels. Results showed that radial kernel SVM can satisfactorily predict this phenomenon, with an accuracy of 88.0% for the 6-year programme and of 66.67% for the 4-year programme.","PeriodicalId":117157,"journal":{"name":"2020 39th International Conference of the Chilean Computer Science Society (SCCC)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predictive model for estimating internal transfer of Informatics Engineering students\",\"authors\":\"Jacqueline Köhler, F. Robles, J. Jara\",\"doi\":\"10.1109/SCCC51225.2020.9281230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Student dropout is a significant problem affecting higher education institutions. This phenomenon is the result of multiple causes and has different forms. The aim of this work was to predict which students of the Departamento de Ingeniería Informática, Universidad de Santiago de Chile, will migrate to a different programme. For this purpose, we considered logistic regression models and support vector machines (SVM) with linear and radial kernels. Results showed that radial kernel SVM can satisfactorily predict this phenomenon, with an accuracy of 88.0% for the 6-year programme and of 66.67% for the 4-year programme.\",\"PeriodicalId\":117157,\"journal\":{\"name\":\"2020 39th International Conference of the Chilean Computer Science Society (SCCC)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 39th International Conference of the Chilean Computer Science Society (SCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCC51225.2020.9281230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC51225.2020.9281230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

学生辍学是影响高等教育的一个重大问题。这种现象是多种原因共同作用的结果,具有不同的表现形式。这项工作的目的是预测智利圣地亚哥大学Ingeniería Informática系的哪些学生将迁移到不同的方案。为此,我们考虑了具有线性和径向核的逻辑回归模型和支持向量机(SVM)。结果表明,径向核支持向量机可以很好地预测这一现象,6年计划的准确率为88.0%,4年计划的准确率为66.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive model for estimating internal transfer of Informatics Engineering students
Student dropout is a significant problem affecting higher education institutions. This phenomenon is the result of multiple causes and has different forms. The aim of this work was to predict which students of the Departamento de Ingeniería Informática, Universidad de Santiago de Chile, will migrate to a different programme. For this purpose, we considered logistic regression models and support vector machines (SVM) with linear and radial kernels. Results showed that radial kernel SVM can satisfactorily predict this phenomenon, with an accuracy of 88.0% for the 6-year programme and of 66.67% for the 4-year programme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信