{"title":"接触表面积:智能手机视频中心率估计的新信号","authors":"Sara Fridovich-Keil, P. Ramadge","doi":"10.1109/GlobalSIP.2018.8646391","DOIUrl":null,"url":null,"abstract":"We consider the problem of smartphone video-based heart rate estimation, which typically relies on measuring the green color intensity of the user’s skin. We describe a novel signal in fingertip videos used for smartphone-based heart rate estimation: fingertip contact surface area. We propose a model relating contact surface area to pressure, and validate it on a dataset of 786 videos from 62 participants by demonstrating a statistical correlation between contact surface area and green color intensity. We estimate heart rate on our dataset with two algorithms, a baseline using the green signal only and a novel algorithm based on both color and area. We demonstrate lower rates of substantial errors (> 10 beats per minute) using the novel algorithm (4.1%), compared both to the baseline algorithm (6.4%) and to published results using commercial color-based applications (≥ 6%).","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONTACT SURFACE AREA: A NOVEL SIGNAL FOR HEART RATE ESTIMATION IN SMARTPHONE VIDEOS\",\"authors\":\"Sara Fridovich-Keil, P. Ramadge\",\"doi\":\"10.1109/GlobalSIP.2018.8646391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of smartphone video-based heart rate estimation, which typically relies on measuring the green color intensity of the user’s skin. We describe a novel signal in fingertip videos used for smartphone-based heart rate estimation: fingertip contact surface area. We propose a model relating contact surface area to pressure, and validate it on a dataset of 786 videos from 62 participants by demonstrating a statistical correlation between contact surface area and green color intensity. We estimate heart rate on our dataset with two algorithms, a baseline using the green signal only and a novel algorithm based on both color and area. We demonstrate lower rates of substantial errors (> 10 beats per minute) using the novel algorithm (4.1%), compared both to the baseline algorithm (6.4%) and to published results using commercial color-based applications (≥ 6%).\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CONTACT SURFACE AREA: A NOVEL SIGNAL FOR HEART RATE ESTIMATION IN SMARTPHONE VIDEOS
We consider the problem of smartphone video-based heart rate estimation, which typically relies on measuring the green color intensity of the user’s skin. We describe a novel signal in fingertip videos used for smartphone-based heart rate estimation: fingertip contact surface area. We propose a model relating contact surface area to pressure, and validate it on a dataset of 786 videos from 62 participants by demonstrating a statistical correlation between contact surface area and green color intensity. We estimate heart rate on our dataset with two algorithms, a baseline using the green signal only and a novel algorithm based on both color and area. We demonstrate lower rates of substantial errors (> 10 beats per minute) using the novel algorithm (4.1%), compared both to the baseline algorithm (6.4%) and to published results using commercial color-based applications (≥ 6%).