面向实时嵌入式系统的构件模型ProCom的验证合成

Etienne Borde, Jan Carlson
{"title":"面向实时嵌入式系统的构件模型ProCom的验证合成","authors":"Etienne Borde, Jan Carlson","doi":"10.1145/2000229.2000248","DOIUrl":null,"url":null,"abstract":"To take advantage of component-based software engineering, software designers need a component framework that automates the assemblage and integration of developed components. It is then of prime importance to ensure that the synthesized code respects the definition of the component model's semantics. This is all the more difficult in the domain of embedded systems since the considered semantics usually aims at characterizing both functional properties (e.g. data and control dependencies) and non-functional properties such as timing and memory consumption.\n The component model considered in this paper, called ProCom, relies on an asynchronous operational semantics and a formal hypothesis of atomic and instantaneous interactions between components. The asynchronous approach targets higher exibility in the deployment and analysis process, while the formal hypothesis helps in reducing the combinatory problems of formal verification.\n In this paper, we present a code generation strategy to synthesize ProCom components, and a formalization of this generated code. This formalization extends the verification possibilities of ProCom architectures, and constitutes a step toward the verification that the produced code respects the operational semantics of ProCom.","PeriodicalId":399536,"journal":{"name":"International Symposium on Component-Based Software Engineering","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Towards verified synthesis of ProCom, a component model for real-time embedded systems\",\"authors\":\"Etienne Borde, Jan Carlson\",\"doi\":\"10.1145/2000229.2000248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To take advantage of component-based software engineering, software designers need a component framework that automates the assemblage and integration of developed components. It is then of prime importance to ensure that the synthesized code respects the definition of the component model's semantics. This is all the more difficult in the domain of embedded systems since the considered semantics usually aims at characterizing both functional properties (e.g. data and control dependencies) and non-functional properties such as timing and memory consumption.\\n The component model considered in this paper, called ProCom, relies on an asynchronous operational semantics and a formal hypothesis of atomic and instantaneous interactions between components. The asynchronous approach targets higher exibility in the deployment and analysis process, while the formal hypothesis helps in reducing the combinatory problems of formal verification.\\n In this paper, we present a code generation strategy to synthesize ProCom components, and a formalization of this generated code. This formalization extends the verification possibilities of ProCom architectures, and constitutes a step toward the verification that the produced code respects the operational semantics of ProCom.\",\"PeriodicalId\":399536,\"journal\":{\"name\":\"International Symposium on Component-Based Software Engineering\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Component-Based Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2000229.2000248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Component-Based Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2000229.2000248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

为了利用基于组件的软件工程,软件设计人员需要一个组件框架,它可以自动组装和集成已开发的组件。因此,确保合成代码遵守组件模型语义的定义是最重要的。这在嵌入式系统领域就更加困难了,因为所考虑的语义通常旨在描述功能属性(例如数据和控制依赖关系)和非功能属性(例如定时和内存消耗)。本文中考虑的组件模型称为ProCom,它依赖于异步操作语义和组件之间原子和瞬时交互的形式化假设。异步方法在部署和分析过程中具有更高的灵活性,而形式化假设有助于减少形式化验证的组合问题。本文提出了一种合成ProCom组件的代码生成策略,并对生成的代码进行了形式化描述。这种形式化扩展了ProCom架构的验证可能性,并构成了验证生成的代码尊重ProCom的操作语义的一个步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards verified synthesis of ProCom, a component model for real-time embedded systems
To take advantage of component-based software engineering, software designers need a component framework that automates the assemblage and integration of developed components. It is then of prime importance to ensure that the synthesized code respects the definition of the component model's semantics. This is all the more difficult in the domain of embedded systems since the considered semantics usually aims at characterizing both functional properties (e.g. data and control dependencies) and non-functional properties such as timing and memory consumption. The component model considered in this paper, called ProCom, relies on an asynchronous operational semantics and a formal hypothesis of atomic and instantaneous interactions between components. The asynchronous approach targets higher exibility in the deployment and analysis process, while the formal hypothesis helps in reducing the combinatory problems of formal verification. In this paper, we present a code generation strategy to synthesize ProCom components, and a formalization of this generated code. This formalization extends the verification possibilities of ProCom architectures, and constitutes a step toward the verification that the produced code respects the operational semantics of ProCom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信