基于LBP、HOG、GIST描述符和典型相关分析的特征融合人脸识别

Hung Ta Minh Nhat, Vinh Truong Hoang
{"title":"基于LBP、HOG、GIST描述符和典型相关分析的特征融合人脸识别","authors":"Hung Ta Minh Nhat, Vinh Truong Hoang","doi":"10.1109/ICT.2019.8798816","DOIUrl":null,"url":null,"abstract":"Face recognition is the most active research topics in machine vision because of its highly secured demands. The fusion of multiple features can enhance the accuracy of face recognition systems instead of using only one type of feature. However, this leads to increase the storage and processing time. In this work, we apply feature fusion by using Canonical Correlation Analysis to concatenate two different feature sources for coding a facial image. Three popular descriptors (LBP, HOG, GIST) have been investigated for extracting facial features based on block division.","PeriodicalId":127412,"journal":{"name":"2019 26th International Conference on Telecommunications (ICT)","volume":"251 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Feature fusion by using LBP, HOG, GIST descriptors and Canonical Correlation Analysis for face recognition\",\"authors\":\"Hung Ta Minh Nhat, Vinh Truong Hoang\",\"doi\":\"10.1109/ICT.2019.8798816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition is the most active research topics in machine vision because of its highly secured demands. The fusion of multiple features can enhance the accuracy of face recognition systems instead of using only one type of feature. However, this leads to increase the storage and processing time. In this work, we apply feature fusion by using Canonical Correlation Analysis to concatenate two different feature sources for coding a facial image. Three popular descriptors (LBP, HOG, GIST) have been investigated for extracting facial features based on block division.\",\"PeriodicalId\":127412,\"journal\":{\"name\":\"2019 26th International Conference on Telecommunications (ICT)\",\"volume\":\"251 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 26th International Conference on Telecommunications (ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2019.8798816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 26th International Conference on Telecommunications (ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2019.8798816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

人脸识别因其安全性要求高而成为机器视觉领域最活跃的研究课题。多种特征的融合可以提高人脸识别系统的准确率,而不是只使用一种特征。然而,这会增加存储和处理时间。在这项工作中,我们通过使用典型相关分析将两个不同的特征源连接起来进行面部图像编码,从而应用特征融合。研究了基于块分割的三种常用描述符(LBP、HOG、GIST)提取人脸特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature fusion by using LBP, HOG, GIST descriptors and Canonical Correlation Analysis for face recognition
Face recognition is the most active research topics in machine vision because of its highly secured demands. The fusion of multiple features can enhance the accuracy of face recognition systems instead of using only one type of feature. However, this leads to increase the storage and processing time. In this work, we apply feature fusion by using Canonical Correlation Analysis to concatenate two different feature sources for coding a facial image. Three popular descriptors (LBP, HOG, GIST) have been investigated for extracting facial features based on block division.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信