利用LOFAR和三损耗变分自编码器改进螺旋桨船舶入级

Nhat Hoang Bach, V. Nguyen, Le Ha Vu
{"title":"利用LOFAR和三损耗变分自编码器改进螺旋桨船舶入级","authors":"Nhat Hoang Bach, V. Nguyen, Le Ha Vu","doi":"10.1109/ICECET55527.2022.9873436","DOIUrl":null,"url":null,"abstract":"This paper presents an underwater signal processing model for the purpose of detecting and classifying propeller ship by the Low Frequency Analysis and Recording (LOFAR) algorithm combined with the Triple loss Variational Auto-Encoder network (TL- VAE). The results of the model have been tested on real data sets of Deepship, and showed better classification accuracy than Convolutional Neural Network (CNN) VGG-19. By replacing FFT with STFT before normalizing by TPSW (Two pass split window) and using the spatial domain probability distribution, the proposed model LOFAR-TL-VAE improved the classification accuracy by 10% even with low signal to noise ratio actual signals.","PeriodicalId":249012,"journal":{"name":"2022 International Conference on Electrical, Computer and Energy Technologies (ICECET)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving the classification of propeller ships using LOFAR and triple loss variational auto encoder\",\"authors\":\"Nhat Hoang Bach, V. Nguyen, Le Ha Vu\",\"doi\":\"10.1109/ICECET55527.2022.9873436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an underwater signal processing model for the purpose of detecting and classifying propeller ship by the Low Frequency Analysis and Recording (LOFAR) algorithm combined with the Triple loss Variational Auto-Encoder network (TL- VAE). The results of the model have been tested on real data sets of Deepship, and showed better classification accuracy than Convolutional Neural Network (CNN) VGG-19. By replacing FFT with STFT before normalizing by TPSW (Two pass split window) and using the spatial domain probability distribution, the proposed model LOFAR-TL-VAE improved the classification accuracy by 10% even with low signal to noise ratio actual signals.\",\"PeriodicalId\":249012,\"journal\":{\"name\":\"2022 International Conference on Electrical, Computer and Energy Technologies (ICECET)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Electrical, Computer and Energy Technologies (ICECET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECET55527.2022.9873436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electrical, Computer and Energy Technologies (ICECET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECET55527.2022.9873436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于低频分析与记录(LOFAR)算法和三损耗变分自编码器网络(TL- VAE)相结合的水下信号处理模型,用于螺旋桨船舶的检测与分类。该模型在Deepship的真实数据集上进行了测试,显示出比卷积神经网络(CNN) VGG-19更好的分类精度。通过在TPSW (Two pass split window)归一化前用STFT代替FFT,并利用空间域概率分布,所提出的LOFAR-TL-VAE模型即使在低信噪比的实际信号下,分类准确率也提高了10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the classification of propeller ships using LOFAR and triple loss variational auto encoder
This paper presents an underwater signal processing model for the purpose of detecting and classifying propeller ship by the Low Frequency Analysis and Recording (LOFAR) algorithm combined with the Triple loss Variational Auto-Encoder network (TL- VAE). The results of the model have been tested on real data sets of Deepship, and showed better classification accuracy than Convolutional Neural Network (CNN) VGG-19. By replacing FFT with STFT before normalizing by TPSW (Two pass split window) and using the spatial domain probability distribution, the proposed model LOFAR-TL-VAE improved the classification accuracy by 10% even with low signal to noise ratio actual signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信