阅读人脑单词的隐马尔可夫模型

S. Schoenmakers, T. Heskes, M. Gerven
{"title":"阅读人脑单词的隐马尔可夫模型","authors":"S. Schoenmakers, T. Heskes, M. Gerven","doi":"10.1109/PRNI.2015.31","DOIUrl":null,"url":null,"abstract":"Recent work has shown that it is possible to reconstruct perceived stimuli from human brain activity. At the same time, studies have indicated that perception and imagery share the same neural substrate. This could bring cognitive brain computer interfaces (BCIs) that are driven by direct readout of mental images within reach. A desirable feature of such BCIs is that subjects gain the ability to construct arbitrary messages. In this study, we explore whether words can be generated from neural activity patterns that reflect the perception of individual characters. To this end, we developed a graphical model where low-level properties of individual characters are represented via Gaussian mixture models and high-level properties reflecting character co-occurrences are represented via a hidden Markov model. With this work we provide the initial outline of a model that could allow the development of cognitive BCIs driven by direct decoding of internally generated messages.","PeriodicalId":380902,"journal":{"name":"2015 International Workshop on Pattern Recognition in NeuroImaging","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hidden Markov Models for Reading Words from the Human Brain\",\"authors\":\"S. Schoenmakers, T. Heskes, M. Gerven\",\"doi\":\"10.1109/PRNI.2015.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work has shown that it is possible to reconstruct perceived stimuli from human brain activity. At the same time, studies have indicated that perception and imagery share the same neural substrate. This could bring cognitive brain computer interfaces (BCIs) that are driven by direct readout of mental images within reach. A desirable feature of such BCIs is that subjects gain the ability to construct arbitrary messages. In this study, we explore whether words can be generated from neural activity patterns that reflect the perception of individual characters. To this end, we developed a graphical model where low-level properties of individual characters are represented via Gaussian mixture models and high-level properties reflecting character co-occurrences are represented via a hidden Markov model. With this work we provide the initial outline of a model that could allow the development of cognitive BCIs driven by direct decoding of internally generated messages.\",\"PeriodicalId\":380902,\"journal\":{\"name\":\"2015 International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2015.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2015.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,从人类大脑活动中重建感知到的刺激是可能的。与此同时,研究表明,感知和图像共享相同的神经基质。这可能会使认知脑机接口(bci)触手可及,这种接口由直接读出心理图像驱动。这种bci的一个理想特性是,主体可以获得构造任意消息的能力。在这项研究中,我们探索是否可以从反映个体字符感知的神经活动模式中生成单词。为此,我们开发了一个图形模型,其中单个字符的低级属性通过高斯混合模型表示,反映字符共现的高级属性通过隐马尔可夫模型表示。通过这项工作,我们提供了一个模型的初步轮廓,该模型可以允许通过直接解码内部生成的消息来开发认知脑机接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hidden Markov Models for Reading Words from the Human Brain
Recent work has shown that it is possible to reconstruct perceived stimuli from human brain activity. At the same time, studies have indicated that perception and imagery share the same neural substrate. This could bring cognitive brain computer interfaces (BCIs) that are driven by direct readout of mental images within reach. A desirable feature of such BCIs is that subjects gain the ability to construct arbitrary messages. In this study, we explore whether words can be generated from neural activity patterns that reflect the perception of individual characters. To this end, we developed a graphical model where low-level properties of individual characters are represented via Gaussian mixture models and high-level properties reflecting character co-occurrences are represented via a hidden Markov model. With this work we provide the initial outline of a model that could allow the development of cognitive BCIs driven by direct decoding of internally generated messages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信