基于脉冲振动响应的轨道中性温度估计的机器学习框架

Yuning Wu, Chi-Luen Huang, Sangmin Lee, Keping Zhang, Xuan Zhu, J. Popovics, M. Dersch
{"title":"基于脉冲振动响应的轨道中性温度估计的机器学习框架","authors":"Yuning Wu, Chi-Luen Huang, Sangmin Lee, Keping Zhang, Xuan Zhu, J. Popovics, M. Dersch","doi":"10.32548/rs.2022.021","DOIUrl":null,"url":null,"abstract":"Longitudinal rail force management of continuous welded rail (CWR) is important for safe and efficient railroad operation. A key parameter to measure and monitor is the rail neutral temperature (RNT) or the stress-free temperature. The team proposed a supervised learning framework to estimate the RNT using impulse vibrational responses from CWRs. We first established an instrumented field site on a revenue-service line and collected impulse vibrational response data covering a wide range of temperature and thermal stress. Then, we trained a data-driven model that uses rail temperatures and modal frequencies as the input for in-situ RNT prediction. The results demonstrated that the proposed framework could provide RNT estimation with a reasonable precision (±5 ºF)","PeriodicalId":367504,"journal":{"name":"ASNT 30th Research Symposium Conference Proceedings","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning Framework for Rail Neutral Temperature Estimation using Impulse Vibrational Responses\",\"authors\":\"Yuning Wu, Chi-Luen Huang, Sangmin Lee, Keping Zhang, Xuan Zhu, J. Popovics, M. Dersch\",\"doi\":\"10.32548/rs.2022.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Longitudinal rail force management of continuous welded rail (CWR) is important for safe and efficient railroad operation. A key parameter to measure and monitor is the rail neutral temperature (RNT) or the stress-free temperature. The team proposed a supervised learning framework to estimate the RNT using impulse vibrational responses from CWRs. We first established an instrumented field site on a revenue-service line and collected impulse vibrational response data covering a wide range of temperature and thermal stress. Then, we trained a data-driven model that uses rail temperatures and modal frequencies as the input for in-situ RNT prediction. The results demonstrated that the proposed framework could provide RNT estimation with a reasonable precision (±5 ºF)\",\"PeriodicalId\":367504,\"journal\":{\"name\":\"ASNT 30th Research Symposium Conference Proceedings\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASNT 30th Research Symposium Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32548/rs.2022.021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASNT 30th Research Symposium Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32548/rs.2022.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

连续焊轨纵向受力管理对铁路安全高效运行具有重要意义。钢轨中性温度(RNT)或无应力温度是测量和监测的关键参数。该团队提出了一个监督学习框架,利用CWRs的脉冲振动响应来估计RNT。我们首先在一条收入服务线上建立了一个仪器化的现场,并收集了覆盖广泛温度和热应力范围的脉冲振动响应数据。然后,我们训练了一个数据驱动的模型,该模型使用轨道温度和模态频率作为原位RNT预测的输入。结果表明,该框架可以提供合理精度(±5ºF)的RNT估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning Framework for Rail Neutral Temperature Estimation using Impulse Vibrational Responses
Longitudinal rail force management of continuous welded rail (CWR) is important for safe and efficient railroad operation. A key parameter to measure and monitor is the rail neutral temperature (RNT) or the stress-free temperature. The team proposed a supervised learning framework to estimate the RNT using impulse vibrational responses from CWRs. We first established an instrumented field site on a revenue-service line and collected impulse vibrational response data covering a wide range of temperature and thermal stress. Then, we trained a data-driven model that uses rail temperatures and modal frequencies as the input for in-situ RNT prediction. The results demonstrated that the proposed framework could provide RNT estimation with a reasonable precision (±5 ºF)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信