完备集的随机自约性

J. Feigenbaum, L. Fortnow
{"title":"完备集的随机自约性","authors":"J. Feigenbaum, L. Fortnow","doi":"10.1109/SCT.1991.160252","DOIUrl":null,"url":null,"abstract":"Informally, a function f is random-self-reducible if the evaluation of f at any given instance x can be reduced in polynomial time to the evaluation of f at one or more random instances y/sub i/. A set is random-self-reducible if its characteristic function is. The authors generalize the previous formal definitions of random-self-reducibility. They show that, even under this very general definition, sets that are complete for any level of the polynomial hierarchy are not random-self-reducible, unless the hierarchy collapses. In particular, NP-complete sets are not random-self-reducible, unless the hierarchy collapses at the third level. By contrast, the authors show that sets complete for the classes PP and MOD/sub m/P are random-self-reducible.<<ETX>>","PeriodicalId":158682,"journal":{"name":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","volume":"243 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"206","resultStr":"{\"title\":\"On the random-self-reducibility of complete sets\",\"authors\":\"J. Feigenbaum, L. Fortnow\",\"doi\":\"10.1109/SCT.1991.160252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Informally, a function f is random-self-reducible if the evaluation of f at any given instance x can be reduced in polynomial time to the evaluation of f at one or more random instances y/sub i/. A set is random-self-reducible if its characteristic function is. The authors generalize the previous formal definitions of random-self-reducibility. They show that, even under this very general definition, sets that are complete for any level of the polynomial hierarchy are not random-self-reducible, unless the hierarchy collapses. In particular, NP-complete sets are not random-self-reducible, unless the hierarchy collapses at the third level. By contrast, the authors show that sets complete for the classes PP and MOD/sub m/P are random-self-reducible.<<ETX>>\",\"PeriodicalId\":158682,\"journal\":{\"name\":\"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference\",\"volume\":\"243 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"206\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCT.1991.160252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1991.160252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 206

摘要

非正式地说,如果函数f在任意给定实例x上的值可以在多项式时间内约简为f在一个或多个随机实例y/下标i/上的值,则函数f是随机自约的。如果一个集合的特征函数为,则该集合是随机自约的。作者推广了以往随机自约性的形式化定义。他们证明了,即使在这个非常一般的定义下,对于多项式层次的任何一层完备的集合都不是随机自约的,除非这个层次崩溃。特别是,np完全集不是随机自约的,除非层次结构在第三层崩溃。相反,作者证明了PP类和MOD/ subm /P类的完备集是随机自约的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the random-self-reducibility of complete sets
Informally, a function f is random-self-reducible if the evaluation of f at any given instance x can be reduced in polynomial time to the evaluation of f at one or more random instances y/sub i/. A set is random-self-reducible if its characteristic function is. The authors generalize the previous formal definitions of random-self-reducibility. They show that, even under this very general definition, sets that are complete for any level of the polynomial hierarchy are not random-self-reducible, unless the hierarchy collapses. In particular, NP-complete sets are not random-self-reducible, unless the hierarchy collapses at the third level. By contrast, the authors show that sets complete for the classes PP and MOD/sub m/P are random-self-reducible.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信