基于概率神经网络的自适应数据分类器

C.D. Wang, J. P. Thompson
{"title":"基于概率神经网络的自适应数据分类器","authors":"C.D. Wang, J. P. Thompson","doi":"10.1109/NAECON.1991.165896","DOIUrl":null,"url":null,"abstract":"Based on a self-organized, probabilistic neural network (PNN) paradigm, a parallel network can be used to sort data parameters into classes with high-sorting accuracy and low fragmentation. The capabilities of the sorter, as applied to ESM (electronic support measure) pulse-data sorting, are shown. The PNN implements the statistical Bayesian strategy by computing a joint probability density over all input data parameters to match a group of candidate data classes. The sorting is accomplished by assigning the inputs to the most likely group with highest probability density estimate. Based on test data from an ESM system, the PNN has shown significant improvement over conventional rule-based techniques. The parallel computer architecture of PNN is well-suited for VLSI chip implementation. An 80000 gate semicustom chip design is described.<<ETX>>","PeriodicalId":247766,"journal":{"name":"Proceedings of the IEEE 1991 National Aerospace and Electronics Conference NAECON 1991","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An adaptive data sorter based on probabilistic neural networks\",\"authors\":\"C.D. Wang, J. P. Thompson\",\"doi\":\"10.1109/NAECON.1991.165896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on a self-organized, probabilistic neural network (PNN) paradigm, a parallel network can be used to sort data parameters into classes with high-sorting accuracy and low fragmentation. The capabilities of the sorter, as applied to ESM (electronic support measure) pulse-data sorting, are shown. The PNN implements the statistical Bayesian strategy by computing a joint probability density over all input data parameters to match a group of candidate data classes. The sorting is accomplished by assigning the inputs to the most likely group with highest probability density estimate. Based on test data from an ESM system, the PNN has shown significant improvement over conventional rule-based techniques. The parallel computer architecture of PNN is well-suited for VLSI chip implementation. An 80000 gate semicustom chip design is described.<<ETX>>\",\"PeriodicalId\":247766,\"journal\":{\"name\":\"Proceedings of the IEEE 1991 National Aerospace and Electronics Conference NAECON 1991\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 1991 National Aerospace and Electronics Conference NAECON 1991\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.1991.165896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 1991 National Aerospace and Electronics Conference NAECON 1991","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.1991.165896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于自组织概率神经网络(PNN)范式的并行网络可以对数据参数进行排序,排序精度高,碎片化程度低。显示了分选器在ESM(电子支持测量)脉冲数据分选中的应用能力。PNN通过计算所有输入数据参数的联合概率密度来匹配一组候选数据类,从而实现统计贝叶斯策略。排序是通过将输入分配给具有最高概率密度估计的最可能的组来完成的。基于ESM系统的测试数据,PNN与传统的基于规则的技术相比有了显著的改进。PNN的并行计算机结构非常适合VLSI芯片的实现。介绍了一种80000栅极半导体定制芯片的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive data sorter based on probabilistic neural networks
Based on a self-organized, probabilistic neural network (PNN) paradigm, a parallel network can be used to sort data parameters into classes with high-sorting accuracy and low fragmentation. The capabilities of the sorter, as applied to ESM (electronic support measure) pulse-data sorting, are shown. The PNN implements the statistical Bayesian strategy by computing a joint probability density over all input data parameters to match a group of candidate data classes. The sorting is accomplished by assigning the inputs to the most likely group with highest probability density estimate. Based on test data from an ESM system, the PNN has shown significant improvement over conventional rule-based techniques. The parallel computer architecture of PNN is well-suited for VLSI chip implementation. An 80000 gate semicustom chip design is described.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信