用l-1正则化最小二乘稀疏识别输出误差模型

Vikram, L. Dewan
{"title":"用l-1正则化最小二乘稀疏识别输出误差模型","authors":"Vikram, L. Dewan","doi":"10.1109/CMI.2016.7413734","DOIUrl":null,"url":null,"abstract":"This paper presents the application of l-1 Regularized Least Square (H RLS)to Sparse identification of linear systems. The l-1 norm is the closest possible convex function to the function 1-0 norm and provides a convex optimization problem provided cost function without l-1 norm is convex. The sparse parameters of Output-Error (OE) model, which gives non-convex cost function, are estimated by combining Instrumental Variable method with 1-1 RLS resulting into a two stage algorithm. To support the speculation, the paper presents performance analysis using simulation results.","PeriodicalId":244262,"journal":{"name":"2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse identification of output error models using l-1 regularized least square\",\"authors\":\"Vikram, L. Dewan\",\"doi\":\"10.1109/CMI.2016.7413734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the application of l-1 Regularized Least Square (H RLS)to Sparse identification of linear systems. The l-1 norm is the closest possible convex function to the function 1-0 norm and provides a convex optimization problem provided cost function without l-1 norm is convex. The sparse parameters of Output-Error (OE) model, which gives non-convex cost function, are estimated by combining Instrumental Variable method with 1-1 RLS resulting into a two stage algorithm. To support the speculation, the paper presents performance analysis using simulation results.\",\"PeriodicalId\":244262,\"journal\":{\"name\":\"2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMI.2016.7413734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMI.2016.7413734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了l-1正则化最小二乘在线性系统稀疏辨识中的应用。l-1范数是与函数1-0范数最接近的凸函数,它提供了一个假设没有l-1范数的代价函数是凸的凸优化问题。将工具变量法与1-1 RLS相结合,提出了一种两阶段算法来估计输出误差(OE)模型的稀疏参数,该模型给出了非凸代价函数。为了支持这种推测,本文利用仿真结果进行了性能分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse identification of output error models using l-1 regularized least square
This paper presents the application of l-1 Regularized Least Square (H RLS)to Sparse identification of linear systems. The l-1 norm is the closest possible convex function to the function 1-0 norm and provides a convex optimization problem provided cost function without l-1 norm is convex. The sparse parameters of Output-Error (OE) model, which gives non-convex cost function, are estimated by combining Instrumental Variable method with 1-1 RLS resulting into a two stage algorithm. To support the speculation, the paper presents performance analysis using simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信