成像技术中矩阵方程的重复解

I. Ciric
{"title":"成像技术中矩阵方程的重复解","authors":"I. Ciric","doi":"10.1109/ANTEM.1998.7861688","DOIUrl":null,"url":null,"abstract":"In various imaging procedures or in linear optimization it is necessary to solve large systems of linear algebraic equations with a few equations being changed many times. Once a complete solution of an n × n system is obtained by applying a classical Gaussian elimination method [1]-[4], for instance, the updated solution of the system, when its last equation is changed, requires 2n2 arithmetic operations for large systems.","PeriodicalId":334204,"journal":{"name":"1998 Symposium on Antenna Technology and Applied Electromagnetics","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the repeated solution of matrix equations in imaging techniques\",\"authors\":\"I. Ciric\",\"doi\":\"10.1109/ANTEM.1998.7861688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In various imaging procedures or in linear optimization it is necessary to solve large systems of linear algebraic equations with a few equations being changed many times. Once a complete solution of an n × n system is obtained by applying a classical Gaussian elimination method [1]-[4], for instance, the updated solution of the system, when its last equation is changed, requires 2n2 arithmetic operations for large systems.\",\"PeriodicalId\":334204,\"journal\":{\"name\":\"1998 Symposium on Antenna Technology and Applied Electromagnetics\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Symposium on Antenna Technology and Applied Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTEM.1998.7861688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Symposium on Antenna Technology and Applied Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTEM.1998.7861688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在各种成像过程或线性优化中,求解大型线性代数方程组是必要的,其中一些方程组被多次更改。例如,应用经典的高斯消去法[1]-[4]得到n × n系统的完全解后,对于大系统,当最后一个方程改变时,系统的更新解需要2n2次算术运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the repeated solution of matrix equations in imaging techniques
In various imaging procedures or in linear optimization it is necessary to solve large systems of linear algebraic equations with a few equations being changed many times. Once a complete solution of an n × n system is obtained by applying a classical Gaussian elimination method [1]-[4], for instance, the updated solution of the system, when its last equation is changed, requires 2n2 arithmetic operations for large systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信